Mostrar el registro sencillo del ítem

dc.contributor.authorDel Arco, Jonspa
dc.contributor.authorPérez, Elenaspa
dc.contributor.authorNaitow, Hisashispa
dc.contributor.authorMatsuura, Yoshinorispa
dc.contributor.authorKunishima, Naokispa
dc.contributor.authorFernández-Lucas, Jesússpa
dc.date.accessioned2019-05-15T12:59:05Z
dc.date.available2019-05-15T12:59:05Z
dc.date.issued2019-01-03
dc.identifier.urihttp://hdl.handle.net/11323/3330spa
dc.description.abstractThe present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from thermus thermophilus hb8 (ttaprt2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric ttaprt2 was immobilized onto glutaraldehydeactivated magresyn®amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at ph 8.5 to encourage the immobilization process by n-termini (mttaprt2a, mttaprt2b, mttaprt2c) or b) an enzyme immobilization at ph 10.0 to encourage the immobilization process through surface exposed lysine residues (mttaprt2d, mttaprt2e, mttaprt2f). According to catalyst load experiments, mttaprt2b (activity: 480 iu g−1 biocatalyst, activity recovery: 52%) and mttaprt2f (activity: 507 iu g−1 biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of ttaprt2. Moreover, the potential reusability of mttaprt2b and mttaprt2f was also tested. Finally, mttaprt2f was employed in the synthesis of nucleoside-5′-monophosphate analogues.spa
dc.description.abstractEl presente trabajo describe la caracterización funcional y estructural de la adenina fosforribosiltransferasa 2 de thermus thermophilus hb8 (ttaprt2). La combinación de datos de especificidad estructural y de sustrato proporcionó información valiosa para los estudios de inmovilización. El ttaprt2 dimérico se inmovilizó en micropartículas porosas de óxido de hierro magnético magresyn®amine activado con glutaraldehido mediante dos estrategias diferentes: a) una inmovilización de enzima a ph 8.5 para alentar el proceso de inmovilización por n-termini (mttaprt2a, mttaprt2c) o bttaprt2c) o b) ph 10.0 para fomentar el proceso de inmovilización a través de residuos de lisina expuestos en la superficie (mttaprt2d, mttaprt2e, mttaprt2f). De acuerdo con los experimentos de carga de catalizador, mttaprt2b (actividad: 480 iu g − 1 biocatalizador, recuperación de actividad: 52%) y mttaprt2f (actividad: 507 iu g − 1 biocatalizador, recuperación de actividad: 44%) fueron elegidos como derivados óptimos. Los estudios de caracterización bioquímica demostraron que el proceso de inmovilización mejoró la termoestabilidad de ttaprt2. Además, también se probó la reutilización potencial de mttaprt2b y mttaprt2f. Finalmente, mttaprt2f se empleó en la síntesis de análogos de nucleósido-5'-monofosfato.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectThermophilesspa
dc.subjectBiocatalysisspa
dc.subjectEnzyme immobilizationspa
dc.subjectProtein crystallographyspa
dc.subjectTermofilosspa
dc.subjectBiocatálisisspa
dc.subjectInmovilización de enzimasspa
dc.subjectCristalografia de proteinasspa
dc.titleStructural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analoguesspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAdams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., Terwilliger, T.C., 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954. Baba, S., Hoshino, T., Ito, L., Kumasaka, T., 2013. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 69, 1839–1849. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Berendsen, W.R., Lapin, A., Reuss, M., 2006. Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol. Prog. 22 (5), 1305–1312. Chapman, J., Ismail, A., Dinu, C., 2018. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8 (6), 238. De Clercq, E., 2005. Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol. 8 (5), 552–560. Del Arco, J., Fernández-Lucas, J., 2017. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5'-monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Suárez, V.J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2017. Enzymatic production of dietary nucleotides from lowsoluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. Del Arco, J., Fernández-Lucas, J., 2018. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 102 (18), 7805–7820. Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fernández-Lucas, J., 2018a. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10 (2), 439–448. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernández-Lucas, J., 2018c. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Available online. http:// www.pymol.org. Dumorne, K., Córdova, D.C., Astorga-Eló, M., Renganathan, P., 2017. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol. 27 (4), 649–659. Elleuche, S., Schroder, C., Sahm, K., Antranikian, G., 2014. Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29, 116–123. Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132. Esipov, R.S., Timofeev, V.I., Sinitsyna, E.V., Tuzova, E.S., Esipova, L.V., Kostromina, M.A., Kuranova, I.P., Miroshnikov, A.I., 2018. Three-dimensional structure of recombinant adenine phosphoribosyltransferase from thermophilic bacterial strain Thermus thermophilus HB27. Russ. J. Bioorg. Chem. 44, 504–510. Galmarini, C.M., Mackey, J.R., Dumontet, C., 2002. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3 (7), 415–424. Gill, S.C., Von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326. Inouye, K., Kuzuya, K., Tonomura, B.I., 1998. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 1388 (1), 209–214. Jemli, S., Ayadi-Zouari, D., Hlima, H.B., Bejar, S., 2016. Biocatalysts: application and engineering for industrial purposes. Crit. Rev. Biotechnol. 36 (2), 246–258. Kabsch, W., 1976. A solution for best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923. Klein, M.P., Nunes, M.R., Rodrigues, R.C., Benvenutti, E.V., Costa, T.M., Hertz, P.F., Ninow, J.L., 2012. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13 (8), 2456–2464. Li, S., Chen, L., Hu, Y., Fang, G., Zhao, M., Guo, Y., Pang, Z., 2017. Enzymatic production of 5′-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae. Food Chem. 216, 275–281. Liu, C., Saeki, D., Matsuyama, H., 2017. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv. 7 (76), 48199–48207. Liu, Z.Q., Zhang, L., Sun, L.H., Li, X.J., Wan, N.W., Zheng, Y.G., 2012. Enzymatic production of 5′-inosinic acid by a newly synthesised acid phosphatase/phosphotransferase. Food Chem. 134 (2), 948–956. Mateo, C., Palomo, J.M., Fernández-Lorente, G., Guisán, J.M., Fernández-Lafuente, R., 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40 (6), 1451–1463. Murakami, Y., Hoshi, R., Hirata, A., 2003. Characterization of polymer–enzyme complex as a novel biocatalyst for nonaqueous enzymology. J. Mol. Catal. B Enzym. 22 (1–2), 79–88. Nagy, M., Ribet, A.M., 1977. Purification and comparative study of adenine and guanine phosphoribosyltransferases from Schizosaccharomyces pombe. Eur. J. Biochem. 77 (1), 77–85. Otwinowski, Z., Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326. Parker, W.B., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109 (7), 2880–2893. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., Fava, F., 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99 (19), 7907–7913. Rathinam, N.K., Sani, R.K., 2018. Bioprospecting of extremophiles for biotechnology applications. In: Sani, R.K., Rathinam, N.K. (Eds.), Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Berlin, pp. 1–23. Rehse, P.H., Tahirov, T.H., 2005. Crystal structure of a purine/pyrimidine phosphoribosyltransferase-related protein from Thermus thermophilus HB8. Proteins 61,658–665. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. Serra, I., Conti, S., Piškur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2–3), 563–570. Shi, W., Tanaka, K.S., Crother, T.R., Taylor, M.W., Almo, S.C., Schramm, V.L., 2001. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 40 (36), 10800–10809. Shi, W., Sarver, A.E., Wang, C.C., Tanaka, K.S., Almo, S.C., Schramm, V.L., 2002. Closedsite complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration. J. Biol. Chem. 277 (42), 39981–39988. Shrestha, N., Chilkoor, G., Vemuri, B., Rathinam, N., Sani, R.K., Gadhamshetty, V., 2018. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour. Technol. 255, 318–330. Silva, M., Silva, C.H., Iulek, J., 2004. Thiemann OH. Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Biochemistry 43 (24), 7663–7671. Sin, I.L., Finch, L.R., 1972. Adenine phosphoribosyltransferase in Mycoplasma mycoides and Escherichia coli. J. Bacteriol. 112 (1), 439–444. Tuttle, J.V., Krenitsky, T.A., 1980. Purine phosphoribosyltransferases from Leishmania donovani. J. Biol. Chem. 235 (3), 909–916. Winn, M., Ballard, C., Cowtan, K., Dodson, E., Emsley, P., Evans, P., Keegan, R., Krissinel, E., Leslie, A., McCoy, A., McNicholas, S., Murshudov, G., Pannu, N., Potterton, E., Powell, H., Read, R., Vagin, A., Wilson, K., 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242. Zhao, X.S., Bao, X.Y., Guo, W., Lee, F.Y., 2006. Immobilizing catalysts on porous materials. Mater. Today 9 (3), 32–39. Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′-phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. Zucca, P., Sanjust, E., 2014. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 19 (9), 14139–14194spa
dc.title.translatedCaracterización estructural y funcional de biocatalizadores termoestables para la síntesis de análogos del nucleósido 5'-monofosfato de 6-aminopurina.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International