Show simple item record

dc.creatorGarcía-Máynez, Adalberto
dc.creatorGary, Margarita
dc.creatorPimienta Acosta, Adolfo
dc.description.abstractIf a, b, c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve x n + y n = z n ? We give a partial solution: if n = 5 or if n-1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last
dc.description.abstractSi a, b, c son enteros distintos de cero, consideramos el siguiente problema: ¿para qué valores de n la línea ax + by + cz = 0 pueden ser tangentes a la curva x n + y n = z n? Damos una solución parcial: si n = 5 o si n-1 es un número primo, entonces la respuesta es que la línea no puede ser tangente a la curva. Este problema está fuertemente relacionado con el último teorema de
dc.publisherUniversidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.subjectChebyshev polynomialsspa
dc.subjectFermat curvespa
dc.subjectPolinomios de Chebyshevspa
dc.subjectCurva de Fermatspa
dc.titleThe generalized Fermat conjecturespa
dc.title.alternativeLa conjetura generalizada de Fermatspa
dcterms.referencesFine, B.—Rosenberger, G.: Classification of all generating pairs of two generator Fuchsian groups. In: London Math. Soc. Lecture Note Ser. 211, 1995, pp. 205–232. Garling, D. J. H.: A Course in Galois Theory, Cambridge University Press, 1986. Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Math. 121, Springer-Verlag, New York, 1990. Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Math. 151, Springer-Verlag, New York, 1994. Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Math., Springer-Verlag, New York, 1996. Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141 (1995), 443–55spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International