Show simple item record


dc.creatorBraga Ferreira, Marcel
dc.creatorRolim Alves, Sílvia Beatriz
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorBeddows, David C .S.
dc.creatorHarrison, Roy M.
dc.creatorQuerol, Xavier
dc.date.accessioned2019-05-17T12:46:32Z
dc.date.available2019-05-17T12:46:32Z
dc.date.issued2018
dc.identifier.issn13091042
dc.identifier.urihttp://hdl.handle.net/11323/4183
dc.description.abstractMeasurements of particle size distribution was made in one location of an urban area in the period January–September/2015 in order to understand the sources and mechanisms influencing ultrafine particle (UFP) number concentrations (PNC2.5-250) using a Scanning Mobility Particle Sizer Spectrometer (SMPS). kmeans cluster analysis was applied to interpret the sources, temporal and spatial trends of UFP. Eight clusters were obtained. Main PSD patterns of each cluster, mean concentration of other air pollutants tracing specific sources and processes, and that of meteorological variables, as well as the hourly and seasonal frequencies of occurrence were used to support the interpretation of their origin. Thus, clusters were attributed to traffic rush hours, midday summer new particle formation, diurnal new particle formation and growth, growth of nucleated and other urban particles, urban background, regional and urban background and regional and urban background on cold nights. Many PSDs of the clusters were dominated by nucleation mode particles: midday nucleated fresh particles, photochemically induced (NPF); diurnal nucleation episodes (NPF2); growth of nucleated particles in nocturnal aging (GNPF). Origins of the clusters were related to local/regional sources (mostly traffic and biomass burning), atmospheric processes (photochemical formation and growth) and urban/regional background. Results clearly shows that traffic is a major UFP source in nucleation mode and occurred in higher concentrations in winter (08:00 to 12:00 h) during traffic rush hours, and at night. Photochemical nucleation occurred with a relatively low frequency but yielding very high PNC.es_ES
dc.description.abstractLas mediciones de la distribución del tamaño de partícula se realizaron en una ubicación de un área urbana en el período de enero a septiembre de 2015 con el fin de comprender las fuentes y los mecanismos que influyen en las concentraciones numéricas de partículas ultrafinas (UFP) (PNC2.5-250) utilizando una partícula de escaneo de movilidad. Espectrómetro Sizer (SMPS). El análisis de clústeres de kmeans se aplicó para interpretar las fuentes, las tendencias temporales y espaciales de la UFP. Se obtuvieron ocho conglomerados. Los patrones principales de PSD de cada grupo, la concentración media de otros contaminantes del aire que rastrean las fuentes y los procesos específicos, y la de las variables meteorológicas, así como las frecuencias horarias y estacionales de ocurrencia se utilizaron para respaldar la interpretación de su origen. Por lo tanto, los grupos se atribuyeron a las horas pico de tráfico, la formación de nuevas partículas al mediodía, la formación y el crecimiento diurno de nuevas partículas, el crecimiento de partículas nucleadas y otras partículas urbanas, el fondo urbano, el fondo regional y urbano y el fondo regional y urbano en las noches frías. Muchos PSD de los grupos estaban dominados por partículas en modo de nucleación: partículas frescas nucleadas al mediodía, inducidas fotoquímicamente (NPF); episodios de nucleación diurna (NPF2); Crecimiento de partículas nucleadas en el envejecimiento nocturno (GNPF). Los orígenes de los grupos se relacionaron con las fuentes locales / regionales (principalmente la quema de tráfico y biomasa), los procesos atmosféricos (formación y crecimiento fotoquímicos) y los antecedentes urbanos / regionales. Los resultados muestran claramente que el tráfico es una fuente importante de UFP en el modo de nucleación y ocurrió en concentraciones más altas en invierno (de 08:00 a 12:00 h) durante las horas pico de tráfico y durante la noche. La nucleación fotoquímica se produjo con una frecuencia relativamente baja pero produciendo PNC muy alta.es_ES
dc.language.isoenges_ES
dc.publisherAtmospheric Pollution Researches_ES
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectClusters analysises_ES
dc.subjectNanoparticleses_ES
dc.subjectParticle number concentrationes_ES
dc.subjectParticle size distributiones_ES
dc.subjectUltrafine particleses_ES
dc.subjectAnálisis de clusterses_ES
dc.subjectNanopartículases_ES
dc.subjectConcentración del número de partículases_ES
dc.subjectDistribución de tamaño de partículaes_ES
dc.subjectPartículas ultrafinases_ES
dc.titleCluster analysis of urban ultrafine particles size distributionses_ES
dc.title.alternativeAnálisis de grupos de distribuciones de tamaño de partículas ultrafinas urbanases_ES
dc.typeArticlees_ES
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Rolim, S.B.A., Pereira, F.N., Wiegand, F., 2013. Measurement of particle number and related pollutant concentrations in an urban area in South Brazil. Atmos. Environ. 70, 254–262. https://doi.org/10.1016/j. atmosenv.2013.01.029. Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075. Atkinson, R.W., Kang, S., Anderson, H.R., Mills, I.C., Walton, H.A., 2014. Epidemiological time series studies of PM 2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69, 660–665. https://doi.org/10.1136/thoraxjnl2013-204492. Beddows, D.C.S., Dall’Osto, M., Harrison, R.M., 2009. Cluster analysis of rural, urban, and curbside atmospheric particle size data. Environ. Sci. Technol. 43, 4694–4700. http://dx.doi.org/10.1021/es803121t. Brines, M., Dall'Osto, M., Beddows, D.C.S., Harrison, R.M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G.P., Salimi, F., Morawska, L., Sioutas, C., Querol, X., 2015. Traffic and nucleation events as main sources of ultrafine particles in highinsolation developed world cities. Atmos. Chem. Phys. 15, 5929–5945. https://doi. org/10.5194/acp-15-5929-2015. Brines, M., Dall'Osto, M., Beddows, D.C.S., Harrison, R.M., Querol, X., 2014. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS. Atmos. Chem. Phys. 14, 2973–2986. https://doi.org/10.5194/acp14-2973-2014. Buonanno, G., Morawska, L., 2015. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Manag. 37, 75–81. https://doi. org/10.1016/j.wasman.2014.03.008. Charron, A., Harrison, R.M., 2003. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ. 37, 4109–4119. https://doi.org/10.1016/S1352-2310(03)00510-7. Cheung, H.C., Chou, C.C.-K., Huang, W.-R., Tsai, C.-Y., 2013. Characterization of ultrafine particle number concentration and new particle formation in an urban environment of Taipei, Taiwan. Atmos. Chem. Phys. 13, 8935–8946. https://doi.org/10.5194/acp13-8935-2013. Dall'Osto, M., Beddows, D.C.S., Pey, J., Rodriguez, S., Alastuey, A., Harrison, R.M., Querol, X., 2012. Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain. Atmos. Chem. Phys. 12, 10693–10707. https://doi.org/10. 5194/acp-12-10693-2012. Dall'Osto, M., Querol, X., Alastuey, A., Minguillon, M.C., Alier, M., Amato, F., Brines, M., Cusack, M., Grimalt, J.O., Karanasiou, A., Moreno, T., Pandolfi, M., Pey, J., Reche, C., Ripoll, A., Tauler, R., Van Drooge, B.L., Viana, M., Harrison, R.M., Gietl, J., Beddows, D., Bloss, W., O'Dowd, C., Ceburnis, D., Martucci, G., Ng, N.L., Worsnop, D., Wenger, J., Mc Gillicuddy, E., Sodeau, J., Healy, R., Lucarelli, F., Nava, S., Jimenez, J.L., Gomez Moreno, F., Artinano, B., Prévôt, A.S.H., Pfaffenberger, L., Frey, S., Wilsenack, F., Casabona, D., Jiménez-Guerrero, P., Gross, D., Cots, N., 2013a. Presenting SAPUSS: solving aerosol problem by using synergistic strategies in Barcelona, Spain. Atmos. Chem. Phys. 13, 8991–9019. https://doi.org/10.5194/acp-13-8991-2013. Dall'Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013b. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS – diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. 13, 4375–4392. https://doi.org/ 10.5194/acp-13-4375-2013. DETRAN, 2013. Departamento Estadual de Trânsito de Rio Grande do Sul. [WWW Document]. http://www.detran.rs.gov.br/. Fujitani, Y., Kumar, P., Tamura, K., Fushimi, A., Hasegawa, S., Takahashi, K., Tanabe, K., Kobayashi, S., Hirano, S., 2012. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci. Total Environ. 437, 339–347. https://doi.org/10.1016/j.scitotenv.2012.07.085. HEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Insights from HEI's research, Boston, US 108 pp. https://www.healtheffects.org/system/files/Perspectives3.pdf. Horvath, H., Kasahara, M., Pesava, P., 1996. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J. Aerosol Sci. 27, 417–435. https://doi.org/10.1016/0021-8502(95)00546-3. IBGE, 2013. Instituto Brasileiro de Geografia e Estatística. [WWW Document]. https:// www.ibge.gov.br/. INPE-CPTEC, 2012. Instituto nacional de pesquisas espaciais e centro de previsão de tempo e estudos climáticos. [WWW Document]. http://www.cptec.br/clima/. Jamriska, M., Morawska, L., Mergersen, K., 2008. The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmos. Environ. 42, 2369–2382. https://doi.org/10.1016/j.atmosenv.2007.12.038. Johnson, G.R., Juwono, A.M., Friend, A.J., Cheung, H.C., Stelcer, E., Cohen, D., Ayoko, G.A., Morawska, L., 2014. Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios. Atmos. Environ. 95, 525–536. https://doi.org/10.1016/j.atmosenv.2014.07.003. Keuken, M.P., Moerman, M., Zandveld, P., Henzing, J.S., 2015a. Total and size-resolved particle number and black carbon concentrations near an industrial area. Atmos. Environ. 122, 196–205. https://doi.org/10.1016/j.atmosenv.2015.09.047. Keuken, M.P., Moerman, M., Zandveld, P., Henzing, J.S., Hoek, G., 2015b. Total and sizeresolved particle number and black carbon concentrations in urban areas near Schiphol airport (The Netherlands). Atmos. Environ. 104, 132–142. https://doi.org/ 10.1016/j.atmosenv.2015.01.015. Kim, S., Shen, S., Sioutas, C., Zhu, Y., Hinds, W.C., 2002. Size distribution and diurnal and seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles basin. J. Air Waste Manag. Assoc. 52 (3), 297–307. http://dx.doi.org/10.1080/ 10473289.2002.10470781. Kittelson, D.B., Watts, W.F., Johnson, J.P., 2006. On-road and laboratory evaluation of combustion aerosols-Part1: summary of diesel engine results. J. Aerosol Sci. 37, 913–930. https://doi.org/10.1016/j.jaerosci.2005.08.005. Krecl, P., Johansson, C., Targino, A.C., Ström, J., Burman, L., 2017. Trends in black carbon and size-resolved particle number concentrations and vehicle emission factors under real-world conditions. Atmos. Environ. 165, 155–168. https://doi.org/10. 1016/j.atmosenv.2017.06.036. Kulmala, M., Hõrrak, U., Manninen, H.E., Mirme, S., Noppel, M., Lehtipalo, K., Junninen, H., Vehkamäki, H., Kerminen, V.M., Noe, S.M., Tammet, H., 2016a. The legacy of Finnish–Estonian air ion and aerosol workshops. Boreal Environ. Res. 21, 181–206. Kulmala, M., Kerminen, V.M., 2008. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 90, 132–150. https://doi.org/10.1016/j.atmosres.2008.01. 005. Kulmala, M., Luoma, K., Virkkula, A., Petäjä, T., Paasonen, P., Kerminen, V.M., Nie, W., Qi, X., Shen, Y., Chi, X., Ding, A., 2016b. On the mode-segregated aerosol particle number concentration load: contributions of primary and secondary particles in Hyytiälä and Nanjing. Boreal Environ. Res. 21, 319–331. Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., McMurry, P.H., 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176. https://doi.org/10. 1016/j.jaerosci.2003.10.003. Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10. https://doi.org/10.1016/j.envint.2014.01.013. Kumar, P., Pirjola, L., Ketzel, M., Harrison, R.M., 2013. Nanoparticle emissions from 11 non-vehicle exhaust sources – a review. Atmos. Environ. 67, 252–277. https://doi. org/10.1016/j.atmosenv.2012.11.011. Kumar, P., Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44, 5035–5052. https://doi.org/10.1016/j.atmosenv.2010. 08.016. Landim, A.A., Teixeira, E.C., Agudelo-Castañeda, D., Schneider, I., Silva, L.F.O., Wiegand, F., Kumar, P., 2018. Air Qual. Atmos. Health. https://doi.org/10.1007/s11869-018- 0584-2. Ma, N., Birmili, W., 2015. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci. Total Environ. 512–513, 154–166. https://doi.org/10.1016/j.scitotenv.2015.01.009. Masiol, M., Squizzato, S., Chalupa, D.C., Utell, M.J., Rich, D.Q., Hopke, P.K., 2018. Longterm trends in submicron particle concentrations in a metropolitan area of the northeastern United States. Sci. Total Environ. 633, 59–70. Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138. https://doi.org/10.1016/j.atmosenv.2008.07.050. Murr, L.E., Garza, K.M., 2009. Natural and anthropogenic environmental nanoparticulates: their microstructural characterization and respiratory health implications. Atmos. Environ. 43, 2683–2692. https://doi.org/10.1016/j.atmosenv.2009.03.002. Pey, J., Querol, X., Alastuey, A., 2009. Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. Atmos. Res. 94, 285–299. https://doi.org/10.1016/j.atmosres.2009.06.006. Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T., Hämeri, K., Koskentalo, T., Virtanen, A., Rönkkö, T., Keskinen, J., Pakkanen, T.A., Hillamo, R.E., 2006. Dispersion of particles and trace gases nearby a city highway: mobile laboratory measurements in Finland. Atmos. Environ. 40, 867–879. https://doi.org/10.1016/j.atmosenv.2005.10.018. Ren, J., Liu, J., Li, F., Cao, X., Ren, S., Xu, B., 2016. A study of ambient fine particles at Tianjin International Airport, China. Sci. Total Environ. 556, 126–135. Ripamonti, G., Järvi, L., Molgaard, B., Hussein, T., Nordbo, A., Hämeri, K., 2013. The effect of local sources on aerosol particle number size distribution, concentrations and fluxes in Helsinki, Finland. Tellus B 1, 1–17. https://doi.org/10.3402/tellusb. v65i0.19786. Ristovski, Z.D., Jayaratne, E.R., Lim, M., Ayoko, G.A., Morawska, L., 2006. Influence of the diesel fuel sulphur content on the nanoparticle emissions from a fleet of city buses. Int. Lab. 40, 1314–1320. Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R., Pandis, S.N., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science (80-. ) 315 1259 LP-1262. Sabaliauskas, K., Jeong, C.-H., Yao, X., Yun-Seok, J., Evans, G.J., 2013. Cluster analysis of roadside ultrafine particle size distributions. Atmos. Environ. 70, 64–74. Salimi, F., Ristovski, Z., Mazaheri, M., Laiman, R., Crilley, L.R., He, C., Clifford, S., Morawska, L., 2014. Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment. Atmos. Chem. Phys. 14, 11883–11892. https://doi.org/10.5194/acp-14-11883-2014. Salma, I., Borsós, T., Németh, Z., Weidinger, T., Aalto, P., Kulmala, M., 2014. Comparative study of ultrafine atmospheric aerosol within a city. Atmos. Environ. 92, 154–161. https://doi.org/10.1016/j.atmosenv.2014.04.020. Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M., 2001. Sources and concentration of nanoparticles (< 10 nm diameter ) in the urban atmosphere. 35, 1193–1202. Shi, J.P., Harrison, R.M., 1999. Investigation of ultrafine particle formation during diesel exhaust dilution. Environ. Sci. Technol. 33, 3730–3736. https://doi.org/10.1021/ es981187l. Teixeira, E., Oliveira, K., Meincke, L., Alam, K., 2011. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles. Atmos. Res. 101, 631–639. https://doi.org/10.1016/j.atmosres.2011.04.010. Teixeira, E.C., Agudelo-Castañeda, D.M., Fachel, J.M.G., Leal, K.A., Garcia, K.D.O., Wiegand, F., 2012. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmos. Res. 118, 390–403. https://doi. org/10.1016/j.atmosres.2012.07.004. Uhrner, U., von Löwis, S., Vehkamäki, H., Wehner, B., Bräsel, S., Hermann, M., Stratmann, F., Kulmala, M., Wiedensohler, A., 2007. Dilution and aerosol dynamics within a diesel car exhaust plume-CFD simulations of on-road measurement conditions. Atmos. Environ. 41, 7440–7461. https://doi.org/10.1016/j.atmosenv.2007.05. 057. Vu, T.V., Delgado-Saborit, J.M., Harrison, R.M., 2015. Review: particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ. 122, 114–132. https://doi.org/10.1016/j.atmosenv.2015. 09.027. Wang, F., Costabileb, F., Li, H., Fang, D., Alligrini, I., 2010. Measurements of ultrafine particle size distribution near Rome. Atmos. Res. 98, 69–77. https://doi.org/10. 1016/j.atmosres.2010.05.010. Wegner, T., Hussein, T., Hämeri, K., Vesala, T., Kulmala, M., Weber, S., 2012. Properties of aerosol signature size distributions in the urban environment as derived by cluster analysis. Atmos. Environ. 61, 350–360. https://doi.org/10.1016/j.atmosenv.2012. 07.048. Wehner, B., Wiedensohler, A., 2003. Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys. 3, 867–879. https://doi.org/10.5194/acp-3-867-2003. Wu, Z., Hu, M., Lin, P., Liu, S., Wehner, B., Wiedensohler, A., 2008. Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ. 42, 7967–7980. https://doi.org/10.1016/j.atmosenv.2008.06.022.es_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International