Mostrar el registro sencillo del ítem

dc.contributor.authorMendoza Castellanos, Luis Sebastianspa
dc.contributor.authorGalindo Noguera, Ana Lisbethspa
dc.contributor.authorCarrillo Caballero, Gaylord Enriquespa
dc.contributor.authorDe Souza, André Leandrospa
dc.contributor.authorCobas, V. R. M.spa
dc.contributor.authorSilva Lora, Electo Eduardospa
dc.contributor.authorVenturini, Osvaldo Joséspa
dc.date.accessioned2019-05-21T12:31:48Z
dc.date.available2019-05-21T12:31:48Z
dc.date.issued2018-11-29
dc.identifier.issn09601481spa
dc.identifier.urihttp://hdl.handle.net/11323/4585spa
dc.description.abstractThe use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajub a-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%e12%.spa
dc.description.abstractEl uso de motores Stirling con energía solar para convertir la energía térmica en electricidad es una solución tecnológica prometedora y renovable que puede contribuir a reducir la dependencia de los combustibles fósiles para la generación de electricidad. Desafortunadamente, la falta de datos experimentales de rendimiento y parámetros operativos para este tipo de tecnología limita su caracterización detallada, dificulta su modelado y diseño y, por consiguiente, su utilización. Este documento tiene como objetivo validar el modelo matemático del sistema Dish / Stirling previamente publicado por Mendoza et al. (2017) con el sistema TRINUM, instalado en la Universidad Federal de Itajub a-Brazil. Para condiciones nominales, el sistema Dish / Stirling genera una potencia eléctrica de 1.00 kW a una irradiación solar de 725 W / m2 con una eficiencia general del sistema del 17.6%. Los resultados muestran que para valores de irradiación solar entre 520 y 950 W / m2, las pruebas experimentales y los resultados del modelado matemático no presentan diferencias considerables, obteniendo una potencia eléctrica de 1089 kWe y una eficiencia del 17,98%, lo que representa desviaciones en el Rango de 2% e12%.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectSolar energyspa
dc.subjectSolar concentratorspa
dc.subjectStirling enginespa
dc.subjectNumerical validationspa
dc.subjectEnergy conversionspa
dc.subjectThermal analysisspa
dc.subjectEnergía solarspa
dc.subjectMotor stirlingspa
dc.subjectValidacion numericaspa
dc.subjectConversión de energíaspa
dc.subjectAnálisis térmicospa
dc.titleExperimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric gridspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesA.O. Pereira, R. Cunha Da Costa, C.D.V. Costa, J.D.M. Marreco, E.L. La Rovere, Perspectives for the expansion of new renewable energy sources in Brazil, Renew. Sustain. Energy Rev. 23 (2013) 49e59. V. Ruffato-Ferreira, et al., A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios, Renew. Sustain. Energy Rev. 72 (May 2017) 1124e1137. October 2015. EPE, Resenha Energetica Brasileira, 2017, p. 296 . C.A. De Melo, G.D.M. Jannuzzi, S.V. Bajay, Nonconventional renewable energy governance in Brazil: lessons to learn from the German experience, Renew. Sustain. Energy Rev. 61 (2016) 222e234. S.A. Kalogirou, Solar Energy Engineering, Processes and Systems, Elsevier Inc, San Diego, California, 2009. K. Sookramoon, P. Bunyawanichakul, B. Kongtragool, Experimental study of a 2-stage parabolic dish-stirling engine in Thailand, Walailak 13 (8) (2016) 579e594. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manag. 126 (Oct. 2016) 60e75. S. Pavlovic, A.M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, R.K. Al-Dadah, Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver, J. Clean. Prod. 150 (May 2017) 75e92. M. Uzair, T.N. Anderson, R.J. Nates, The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver, Sol. Energy 151 (Jul. 2017) 95e101. G. Xiao, T. Yang, D. Ni, K. Cen, M. Ni, A model-based approach for optical performance assessment and optimization of a solar dish, Renew. Energy 100 (Jan. 2017) 103e113. K. Bataineh, Y. Taamneh, Performance analysis of stand-alone solar dish Stirling system for electricity generation, Int. J. Heat Technol. 35 (3) (Sep. 2017) 498e508. G.E. Carrillo, et al., Optimization of a Dish Stirling system working with DIRtype receiver using multi-objective techniques, Appl. Energy 204 (Oct. 2017) 271e286. L.S. Mendoza, G.E. Carrillo Caballero, V.R. Melian Cobas, E.E. Silva Lora, A.M. Martinez Reyes, Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renew. Energy 107 (Jul. 2017) 23e35. Innova Energy Solution, Solar Dish System Cogenerative e Thermal Modules, ” Pescara-Italia, 2014. S. Mata, A. Parella, Technical Assessment and Viability Study of Scale-down Dish Stirling ( DS ) Technology for Power Generation in the Mediterranean Regions, 2015. B. Kongtragool, S. Wongwises, Optimum absorber temperature of a oncereflecting full conical concentrator of a low temperature differential Stirling engine, Renew. Energy 30 (11) (2005) 1671e1687. R. Beltr an Chacon, D. Leal Chavez, D. Sauceda, M. Pellegrini Cervantes, M. Borunda, Design and analysis of a dead volume control for a solaspa
dc.title.translatedAnálisis experimental y validación numérica del sistema solar Dish / Stirling conectado a la red eléctrica.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-sa/4.0/