Mostrar el registro sencillo del ítem

dc.contributor.authorRobles Algarin, Carlos Arturospa
dc.contributor.authorPolo Llanos, Auraspa
dc.contributor.authorOspino Castro, Adalberto Josespa
dc.date.accessioned2019-05-21T13:28:03Z
dc.date.available2019-05-21T13:28:03Z
dc.date.issued2017
dc.identifier.issn2146-4553spa
dc.identifier.urihttp://hdl.handle.net/11323/4605spa
dc.description.abstractDecision-making in energy planning can be approached as a problem of multicriteria decision analysis in which different types of factors are involved. This task must take into account several aspects due to the increasing complexity of social, technological and economic factors. In this context, this paper uses the analytic hierarchy process (AHP) to prioritize a set of criteria, subcriteria and alternatives as a support for decision-making in the process of energy planning with renewable energies for rural areas in the Caribbean region of Colombia. Based on the participation of experts, 5 criteria, 20 subcriteria and 4 alternatives were defined. Using the AHP, the same group of experts was consulted in order to prioritize all aspects. The results showed that the most relevant criteria were the technical with 24.7%. Next were environmental (21.7%), social (19.6%), economic (17.8%) and risk (16.3%). The best renewable energy alternative was solar with 45.3%.spa
dc.description.abstractLa toma de decisiones en la planificación energética se puede abordar como un problema del análisis de decisiones multicriterio en el que intervienen diferentes tipos de factores. Esta tarea debe tener en cuenta varios aspectos debido a la creciente complejidad de los factores sociales, tecnológicos y económicos. En este contexto, este documento utiliza el proceso de jerarquía analítica (AHP) para priorizar un conjunto de criterios, subcriterios y alternativas como apoyo para la toma de decisiones en el proceso de planificación energética con energías renovables para áreas rurales en la región del Caribe de Colombia. Sobre la base de la participación de expertos, se definieron 5 criterios, 20 subcriterios y 4 alternativas. Usando el AHP, se consultó al mismo grupo de expertos para priorizar todos los aspectos. Los resultados mostraron que los criterios más relevantes fueron los técnicos con un 24,7%. Los siguientes fueron: ambiental (21.7%), social (19.6%), económico (17.8%) y riesgo (16.3%). La mejor alternativa de energía renovable fue la solar con un 45,3%.spa
dc.language.isoeng
dc.publisherInternational Journal of Energy Economics and Policyspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectRenewable energyspa
dc.subjectEnergy planningspa
dc.subjectAnalytic hierarchy processspa
dc.subjectEnergía renovablespa
dc.subjectPlanificación energéticaspa
dc.subjectProceso de jerarquía analíticaspa
dc.titleAn analytic hierarchy process based approach for evaluating renewable energy sourcesspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAbdullah, L., Najib, L. (2014), Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360-377. Ahmad, S., Tahar, R. (2014), Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458-466. Amer, M., Daim, T. (2011), Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development, 15(4), 420-435. Aragonés, P., Chaparro, F., Pastor, J., Pla, A. (2014), An AHP (analytic hierarchy process), ANP (analytic network process)-based multicriteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222-238. Baris, K., Kucukali, S. (2012), Availability of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective. Energy Policy, 42, 377-391. Certa, A., Enea, M., Hopps, F. (2015), A multi-criteria approach for the group assessment of an academic course: A case study. Studies in Educational Evaluation, 44, 16-22. Consorcio Energético Corpoema. (2010), Formulación de un Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia. Vol. 2. Bogotá, Colombia: Diagnóstico de las FNCE en Colombia. p6-25. Daim, T., Yates, D., Peng, Y., Jimenez, B. (2009), Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232-243. Demirtas, O. (2013), Evaluating the best renewable energy technology for sustainable energy planning. International Journal of Energy Economics and Policy, 3, 23-33. Diaz, L., González, A., Romero, C. (2017), Measuring systems sustainability with multi-criteria methods: Acritical review. European Journal of Operational Research, 258, 607-616. Gualtieri, G. (2016), An integrated wind resource assessment tool for wind farm planning: System’s upgrades and applications. International Journal of Renewable Energy Research, 6, 1464-1475. Guerrero, G., Sánchez, J., García, M., Lamata, M., Verdegay, J. (2016), Decision-making for risk management in sustainable renewable energy facilities: A case study in the Dominican republic. Sustainability, 8(5), 1-21. Gul, E. (2014), Qualitative assessment of energy initiative: Case study from Liberia. International Journal of Energy Economics and Policy, 4(3), 360-372. Gülçin, B., Sezin, G. (2014), A new GDM based AHP framework with linguistic interval fuzzy preference relations for renewable energy planning. Journal of Intelligent and Fuzzy Systems, 27, 3181-3195. Hein, N., Kroenke, A., Rodrigues, M. (2015), Professor assessment using multi-criteria decision analysis. Procedia Computer Science, 55, 539-548. Hernández, D., Urdaneta, A., de Oliveira, P. (2015), A hierarchical methodology for the integral net energy design of small-scale hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 52, 100-110. International Renewable Energy Agency. (2015), Renewables 2015: Global Status Report. Abu Dhabi: United Arab Emirates. p23-54. Kahraman, C., Kaya, İ., Cebi, S. (2009), A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603-1616. Kang, H., Hung, M., Pearn, W., Lee, A., Kang, M. (2011), An integrated multi-criteria decision making model for evaluating wind farm performance. Energies, 4, 2002-2026. Kaya, T., Kahraman, C. (2010), Multicriteria renewable energy planning using an integrated fuzzy VIKOR and AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. Khalili, N., Duecker, S. (2013), Application of multi-criteria decision analysis in design of sustainable environmental management system framework. Journal of Cleaner Production, 47, 188-198. Kon, S., Mogi, G., Hui, K. (2013), A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R and D resources: In the case of energy technologies against high oil prices. Renewable and Sustainable Energy Reviews, 21, 347-355. Kumar, A., Deng, Y., He, X., Kumar, P. (2016), A multi criteria decision based rural electrification system. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. p4025-4030. Longo, G., Medeossi, G., Padoano, E. (2015), Multi-criteria analysis to support mobility management at a university campus. Transportation Research Procedia, 5, 175-185. Luthra, S., Kumar, S., Kharb, R. (2015), Sustainable assessment in energy planning and management in Indian perspective. Renewable and Sustainable Energy Reviews, 47, 58-73. Ma, X., Zeng, B., Zhang, Y., Li, Y., Liu, Z. (2015), Comprehensive evaluation of renewable energy for power projects based on CA-DEA model. 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). p1848-1853. Mardani, A., Kazimieras, E., Streimikiene, D., Jusoh, A., Nor, K., Khoshnoudi, M. (2016), Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework. Energy, 117, 131-148. Mizanur, M., Paatero, J., Lahdelma, R. (2013), Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy, 59, 589-599. Mourmouris, J., Potolias, C. (2013), A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy, 52, 522-530. Mourmouris, J., Potolias, C., Fantidis, J. (2012), Evaluation of renewable energy sources exploitation at remote regions, using computing model and multi-criteria analysis: A case-study in Samothrace, Greece. International Journal of Renewable Energy Research, 2, 307-316. Muñoz, Y., Guerrero, J., Ospino, A. (2014), Evaluation of a hybrid system of renewable electricity generation for a remote area of Colombia using homer software. TECCIENCIA, 9, 45-54. Nadimi, A., Adabi, F. (2016), Optimized planning for hybrid microgrid in grid connected mode. International Journal of Renewable Energy Research, 6, 494-503. Naveed, M., Irfan, M., Naeem, M., Iqbal, M., Waseem, M., Haneef, M. (2017), Multicriteria decision making for resource management in renewable energy assisted microgrids. Renewable and Sustainable Energy Reviews, 71, 323-341. Nnaji, C., Chukwu, J., Moses, N. (2013), Electricity supply, fossil fuel consumption, Co2 emissions and economic growth: Implications and policy options for sustainable development in Nigeria. International Journal of Energy Economics and Policy, 3(3), 262-271. Pisani, C., Villacci, D. (2011), A novel AHP framework for decision making in power systems sustainable development. 21st International Conference on Electricity Distribution. p1-6. Popiolek, N., Thais, F. (2016), Multi-criteria analysis of innovation policies in favour of solar mobility in France by 2030. Energy Policy, 97, 202-219. Rojas, J., Yusta, J. (2014), Methodologies, technologies and applications for electric supply planning in rural remote areas. Energy for Sustainable Development, 20, 66-76. Rojas, J., Yusta, J. (2015), Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renewable and Sustainable Energy Reviews, 52, 557-571. Rosso, M., Bottero, M., Pomarico, S., La Ferlita, S., Comino, E. (2014), Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy, 67, 870-881. Saaty, T. (2008), Decision making with the analytic hierarchy process. Services Sciences, 1(1), 83-98. Saaty, T., Vargas, L. (2012), Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. 2nd ed. Berlin: Springer. Samal, R.K., Kansal, M.L. (2015), Sustainable Development Contribution Assessment of Renewable Energy Projects using AHP and Compromise Programming Techniques, 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). p1-6. Shabbar, S., Janajreh, I., Ghenai, C. (2014), Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Applied Energy, 136, 909-920. Shen, Y., Lin, G., Li, K., Yuan, B. (2010), An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604-4616. Siskos, E., Askounis, D., Psarras, J. (2014), Multicriteria decision support for global e-government evaluation. Omega, 46, 51-63. Tasri, A., Susilawati, A. (2014), Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34-44. Theodorou, S., Florides, G., Tassou, S. (2010), The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus. A Review, Energy Policy, 38(12), 7783-7792. Unidad de Planeación Minero Energética-UPME. (2015), Integración de las Energías Renovables no Convencionales en Colombia. Bogotá, Colombia: Cundinamarca. p24-77. Wibowo, S., Deng, H. (2015), Multi-criteria group decision making for evaluating the performance of e-waste recycling Yeh, C., Xu, Y. (2013), Sustainable planning of e-waste recycling activities using fuzzy multicriteria decision making. Journal of Cleaner Production, 52, 194-204. Zanuttigh, B., Angelelli, E., Kortenhaus, A., Koca, K., Krontira, Y., Koundouri, P. (2016), A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting. Renewable Energy, 85, 1271-1289. Zhang, J., Lu, K., Liu, G. (2014), Multi-criteria decision making methods for enterprise energy planning under the constraint of carbon emissions. Advanced Materials Research, 962, 1690-1696. Zhang, Y., Xu, Q., Sun, M. (2012), Perspectives for utilization of multicriteria decision methods AHP/ANP to create a national energy strategy in terms of sustainable development. Advanced Materials Research, 616, 1585-1590.spa
dc.title.translatedUn enfoque basado en un proceso de jerarquía analítica para evaluar las fuentes de energía renovables.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International