Mostrar el registro sencillo del ítem

dc.contributor.authorRobles Algarin, Carlos Arturospa
dc.contributor.authorOspino Castro, Adalberto Josespa
dc.contributor.authorNaranjo Casas, Josespa
dc.date.accessioned2019-05-21T13:29:00Z
dc.date.available2019-05-21T13:29:00Z
dc.date.issued2017
dc.identifier.issn13090127spa
dc.identifier.urihttp://hdl.handle.net/11323/4606spa
dc.description.abstractImproving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents a new design of a dual-axis solar tracker system based on a real-time measurement of solar radiation in order to improve the conversion efficiency. As a first design stage, the dynamic models for solar radiation, solar panel and electromechanic system, were obtained using Matlab-Simulink. Then a control unit for capturing the signals from radiation sensors and an inertial measurement unit, was implemented in a High-Performance 16-Bit Digital Signal Controller DSPIC33FJ202MC. The acquired data are compared with a mathematical algorithm to calculate sun's position and set the control action to orient the panel. An embedded system with real-time sampling was developed. It does not rely on external databases and takes into account the relative position between the radiation sensor and solar panel to improve the efficiency of the system.spa
dc.description.abstractMejorar la eficiencia de conversión de los paneles solares se ha convertido en un área de estudio desafiante para los investigadores. Los seguidores solares son una alternativa para alcanzar este objetivo, como se ha demostrado en muchos casos, al rastrear la posición de los cambios del sol, aumenta la productividad del panel. Este documento presenta un nuevo diseño de un sistema de seguimiento solar de doble eje basado en una medición en tiempo real de la radiación solar para mejorar la eficiencia de conversión. Como primera etapa de diseño, los modelos dinámicos para radiación solar, panel solar y sistema electromecánico, se obtuvieron utilizando Matlab-Simulink. Luego se implementó una unidad de control para capturar las señales de los sensores de radiación y una unidad de medición inercial en un controlador de señal digital de alto rendimiento de 16 bits DSPIC33FJ202MC. Los datos adquiridos se comparan con un algoritmo matemático para calcular la posición del sol y configurar la acción de control para orientar el panel. Se desarrolló un sistema embebido con muestreo en tiempo real. No se basa en bases de datos externas y tiene en cuenta la posición relativa entre el sensor de radiación y el panel solar para mejorar la eficiencia del sistema.spa
dc.language.isoeng
dc.publisherInternational Journal Of Renewable Energy Researchspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectDigital signal processorspa
dc.subjectDual-axis solar trackerspa
dc.subjectInertial measurement unitspa
dc.subjectSolar panelspa
dc.subjectSolar radiationspa
dc.subjectProcesador de señal digitalspa
dc.subjectSeguidor solar de doble ejespa
dc.subjectUnidad de medida inercialspa
dc.subjectPanel solarspa
dc.subjectRadiación solarspa
dc.titleDual-axis solar tracker for using in photovoltaic systemsspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] A. Rezaee, “Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 65, pp. 1127-1138, November 2016. [2] M. Saadsaoud, H. Abbassi, S. Kermiche, and M. Ouada, “Study of Partial Shading Effects on Photovoltaic Arrays with Comprehensive Simulator for Global MPPT Control”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 413-420, 2016. [3] M. Amine, M. Ouassaid, and M. Maaroufi, “Single-Sensor Based MPPT for Photovoltaic Systems”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 570-576, 2016. [4] H. Bounechba, A. Bouzid, H. Snani, and A. Lashab, “Real time simulation of MPPT algorithms for PV energy system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 83, pp. 67-78, December 2016. [5] P. Kofinas, A. Dounis, G. Papadakis, and M. Assimakopoulos, “An Intelligent MPPT controller based on direct neural control for partially shaded PV system”, Energy and Buildings. Netherlands, vol. 90, pp. 51-64, March 2015. [6] Y. Chen, Y Jhang, and R. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems”, Solar Energy. United Kingdom, vol. 126, pp. 53- 63, March 2016. [7] A. Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions”, Applied Soft Computing. Netherlands, vol. 32, pp. 38-48, July 2015. [8] R. Pradhan, and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 64, pp. 792-803, January 2015. [9] L. Jiang, D. Maskell, and J. Patra, “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Energy and Buildings. Netherlands, vol. 58, pp. 227-236, March 2013. [10] F. Chen, and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaicthermal roofing panel”, Applied Energy. United Kingdom, vol. 177, pp. 271-284, September 2016. [11] C. Lamnatou, J. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 48, pp. 178-191, August 2015. [12] M. Buker, and S. Riffat, “Building integrated solar thermal collectors – A review”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 51, pp. 327-346, November 2015. [13] T. Yang, and A. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system”, Applied Energy. United Kingdom, vol. 159, pp. 70-79, December 2015. [14] J. Wu, B. Zhang, and L. Wang, “Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart”, Solar Energy. United Kingdom, vol. 127, pp. 36-47, April 2016. [15] I. Stamatescu, I. Făgărăşan, G. Stamatescu, N. Arghira, and S. Iliescu, “Design and Implementation of a Solartracking Algorithm”, Procedia Engineering. United Kingdom, vol. 69, pp. 500-507. [16] R. Vieira, F. Guerra, M. Vale, and M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 64, pp. 672-681, October 2016. [17] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators”, Renewable Energy. United Kingdom, vol. 95, pp. 485-494, September 2016. [18] V. Poulek, A. Khudysh, and M. Libra, “Self powered solar tracker for Low Concentration PV (LCPV) systems”, Solar Energy. United Kingdom, vol. 127, pp. 109-112, April 2016. [19] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy. United Kingdom, vol. 72, pp. 88-98, December 2014. [20] H. Njoku, “Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria”, Energy. United Kingdom, vol. 95, pp. 504-516, January 2016. [21] W. Batayneh, A. Owais, and M. Nairoukh, “An intelligent fuzzy based tracking controller for a dual-axis solar PV system”, Automation in Construction. Netherlands, vol. 29, pp. 100-106, January 2013. [22] S. Yilmaz, H. Ozcalik, O. Dogmus, F. Dincer, O. Akgol, and M. Karaaslan, “Design of two axes sun tracking controller with analytically solar radiation calculations”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 43, pp. 997-1005, March 2015. [23] Y. El Mghouchi, A. El Bouardi, Z. Choulli, and T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment. Qatar, vol. 3, pp. 225-234, December 2014. [24] Ortiz E., “Approximation of a photovoltaic module model using fractional and integral polynomials”, 38 IEEE Photovoltaic Specialists Conference, Austin, pp. 2927- 2931, 3-8 June 2012.spa
dc.title.translatedRastreador solar de doble eje para uso en sistemas fotovoltaicos.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International