Show simple item record


dc.creatorMendoza Fernández, Abdel
dc.creatorGoytisolo Espinosa, Rafael
dc.creatorCabello Eras, Juan Jose
dc.creatorJiménez Borges, Reinier
dc.date.accessioned2019-05-22T13:14:39Z
dc.date.available2019-05-22T13:14:39Z
dc.date.issued2018
dc.identifier.issn00127353
dc.identifier.urihttp://hdl.handle.net/11323/4676
dc.description.abstractThis research deepens on the methods to the solution of the hyper static systems applicable for the assessment resistance of flywheels which are applied to a flywheel of a hammer mill. The results of the analytical methods were validated through a Finite Element Analysis, the results show differences minors than 10%. The equivalent strength in the rim is almost zero in the middle plane of the beam and increases as it moves away from it, and remains constant throughout the rays. It was also observed that in all the studied cases the equivalent tension decreases when the number of rays increases because of the flywheels stiffness increases. Also, graphics tools are obtained to a fast determination of the equivalent tension in the rim according to the number of rays and the speed of operation.spa
dc.description.abstractEn el trabajo se profundiza en dos métodos de cálculo de sistemas hiperestáticos aplicables para la evaluación de la resistencia de volantes de llantas y rayos los que se aplican al volante de un molino de martillos. Los resultados de los métodos analíticos se validaron mediante un Análisis de Elementos Finitos resultando diferencias inferiores al 10%. Las tensiones equivalentes en la llanta se aproximan a cero en el plano medio del rayo y aumentan a medida que se aleja del mismo, y a lo largo de los rayos se mantienen constante. Se apreció además que en todos los casos estudiados las tensiones equivalentes disminuyen a medida que el número de rayos aumenta ya que se incrementa la rigidez de los volantes. En el trabajo se obtienen nomogramas que permiten determinar la tensión equivalente en la llanta en función del número de rayos y la velocidad de operaciónspa
dc.language.isospaspa
dc.publisherDYNA (Colombia)spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectEquivalent stressspa
dc.subjectFlywheelspa
dc.subjectHyper static systemsspa
dc.subjectRaysspa
dc.subjectRimspa
dc.subjectSistemas hiperestáticosspa
dc.subjectTensiones equivalentesspa
dc.subjectVolantesspa
dc.subjectLlantaspa
dc.subjectRayosspa
dc.titleMétodo de cálculo para la determinación de las tensiones en volantes de rayos rectosspa
dc.title.alternativeCalculation method for the determination of the voltages in the straight raysspa
dc.typeArticlespa
dcterms.references[1] Norton, R. L. Diseño de máquinas: un enfoque integrado, 4a ed., México, Prentice Hall, 2011. pp. 34-50. [2] Norton, R. L. Diseño de maquinaria: síntesis y análisis de máquinas y mecanismos. 4a ed., México, McGraw-Hill, 2009. pp. 60-122. [3] Krack, M., Secanell, M., Mertiny, P. Rotor Design for High-Speed Flywheel Energy Storage Systems, 2ed., China, Intech, 2011. pp. 1- 29. http://www.intechopen.com/books/energy-storage-in-theemerging-era-ofsmart-grids/rotor-design-for-high-speed-flywheelenergy-storage-systems/ [4] Bhandari V. B. Design of Machine Elements in Mechanical, 3a ed., New Delhi, Tata McGraw-Hill, 2010. pp. 77-112. [5] Mouleeswaran-Senthil, K. and Yogesh, K. Optimization of flywheel materials using geneticalgorithm. ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering, Vol. 4, 2012. [15 de Abril 2014]. Disponible en: http://acta.fih.upt.ro/pdf/2012-4/ACTA-2012- 4-04.pdf [6] Thirugnanam, A., Rakesh, L. and Rakesh, R. Computer Aided Design of Flywheel Using ‘C’ Program. Middle-East Journal of Scientific Research, 20(5), pp. 577-579, 2014. DOI: 10.5829/idosi.mejsr.2014.20.05.11337 [7] Rathod-Balasaheb S. and Rajmane, M. A Case Study on Design of a Flywheel for Punching Press Operation. International Journal of Engineering and Advanced Technology (IJEAT), 3(4), 2014. [2 Julio 2014]. Disponible en: http://www.me.metu.edu.tr/courses/me418/index%20_files/flywheel designfor%20a%20punchpress.pdf [8] Krishnan. K. Chawla. Composite Materials Science and Engineering. 2a ed., New York, Springer‐verlag, 2001. pp.320-362. [9] Herbst, J., Manifold, S., Murphy, B., Price, J. et al., Design, Fabrication and Testing of 10 MJ Composite Flywheel Energy Storage Rotors. SAE Technical Paper 981282, 1998. DOI: https://doi.org/10.4271/981282. [10] DAI – Xingjian, ZHANG – Kai and ZHANG – Xiao. Design and test of a 300Wh composites flywheel energy storage prototype with active magnetic bearings, in International Conference on Renewable Energies and Power Quality (ICREPQ’11) ( 2011, Las Palmas de Gran Canaria, Spain). European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) , Las Palmas de Gran Canaria, Spain, 2011, p. 6. DOI: https://doi.org/10.24084/repqj09.341 [11] Ripoll-Masferrer Ll. Análisis y diseño de volantes de inercia de materiales compuestos, tesis (Doctorado en Ingeniería), España, Universidad Politécnica de Cataluña, 2005, 233 pp. [12] Christopher D. A., Beach R. Flysheel Technology Development Program for Aerospace Aplication. IEEE AES System Magazine, 13(6), pp. 9 – 14, 1998. DOI: 10.1109/62.683723 [13] Álvarez J., Callejón I., Forns S., Bosch R., Salomón G., Küik J. Acumuladores cinéticos. Aplicación a vehículos de tracción urbana. Anales de ingeniería mecánica, 14(1), 2002. [16 Enero 2015]. Disponible en: http://www.asoc-aeim.es/anales.html [14] Jefferson C. M., Ackerman M. A. Flywheel Variator Energy Storage System. Energy Conversion and Management-Elsevier, 37(10), 1996. DOI: https://doi.org/10.1016/0196-8904(96)00007-6 [15] Sudipta S., Abhik B., Sai-Tejesh G., Srikanth S.P. Computer aided design & analysis on flywheel for greater efficiency. International Journal of Advanced Engineering Research and Studies, (IJAERS). 1 (2), 2012. [fecha de consulta Nov 10 de 2017]. Disponible en: https://pdfs.semanticscholar.org/c38e/b66c612813ee4166181e56c8c3da0b 9d2c17.pdf [16] Gallagher, Patrick, and Jonathan W. Gabrys. "Containment ring for flywheel failure." U.S. Patent No. 6,182,531. 6 Feb. 2001. [17] Dhengle, S. M., Bhope, D. D., & Khamankar, S. D. (2012). Investigation of stresses in arm type rotating flywheel. International Journal of Engineering Science and Technology (IJEST), 4 (2), 2012 [fecha de consulta Nov 20 de 2017]. Disponible en: https://www.idconline.com/technical_references/pdfs/mechanical_engineering/Inves tigation%20Of%20Stresses%20In%20%20Arm%20Type%20Rotati ng%20Flywheel.pdf [18] Wilmer V., Mendoza R. and Triana G. Análisis estructural mediante simulación IAO en una estructura de carga y su validación, Revista INGE CUC. 8 (1), 2012. [fecha de consulta]. Disponible en: https://www.researchgate.net/publication/314211709_Analisis_estructural_ mediante_simulacion_IAO_en_una_estructura_de_carga_y_su_validacion [19] López A. G., et al. Análisis de esfuerzos en un apero de tracción animal, empleando métodos experimentales y numéricos, Ingenierías. 9(33), 2006. [fecha de consulta]. Disponible en: http://ingenierias.uanl.mx/33/33_analisis.pdfspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International