Show simple item record


dc.creatorCardenas Escorcia, Yulineth del Carmen
dc.creatorValencia Ochoa, Guillermo Eliecer
dc.creatorDuarte Forero, Jorge
dc.date.accessioned2019-05-22T13:27:08Z
dc.date.available2019-05-22T13:27:08Z
dc.date.issued2018
dc.identifier.isbn978-88-95608- 62-4
dc.identifier.issn2283-9216
dc.identifier.urihttp://hdl.handle.net/11323/4682
dc.description.abstractStudies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the enginespa
dc.description.abstractSe han llevado a cabo estudios sobre el fenómeno de la autoignición en combustibles líquidos y gas natural, pero la investigación sobre la aplicación de combustibles gaseosos obtenidos de la biomasa es limitada. Las investigaciones existentes sobre la autoignición se centraron principalmente en la cinética de la combustión para determinar el tiempo de retardo, pero no en la predicción del conjunto de parámetros que fomentan la presencia del fenómeno. En la presente investigación, se desarrolló un modelo termodinámico para la predicción del autoignición en el motor de combustión interna con encendido por chispa que funciona con combustibles gaseosos, que se obtienen del proceso de gasificación de la biomasa. El modelo formulado puede manejar composiciones variables de combustibles gaseosos y optimizar los principales parámetros operativos del motor, para verificar su influencia en el fenómeno en estudio. Los resultados muestran la aplicación de este tipo de combustibles alternativos en motores comerciales que operan con gas natural, variando los parámetros operativos del motor y maximizando la potencia de salida del motor.spa
dc.language.isoengspa
dc.publisherItalian Association of Chemical Engineering - AIDICspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectBiomassspa
dc.subjectInternal combustion enginesspa
dc.subjectNatural gasspa
dc.subjectIgnitionspa
dc.subjectBiomasaspa
dc.subjectMotores de combustión internaspa
dc.subjectGas naturalspa
dc.subjectEncendidospa
dc.titleCharacterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomassspa
dc.title.alternativeCaracterización de los fenómenos de autoignición en motores de combustión interna por encendido por chispa utilizando combustibles gaseosos obtenidos de biomasa.spa
dc.typeArticlespa
dcterms.referencesAmador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International