Mostrar el registro sencillo del ítem

dc.contributor.authorKyu, Hmwe Hspa
dc.contributor.authorMaddison, Emilie Rspa
dc.contributor.authorHenry, Nathaniel Jspa
dc.contributor.authorMumford, John Everettspa
dc.contributor.authorBarber, Ryanspa
dc.contributor.authorShields, Chloespa
dc.contributor.authorBrown, Jonathan Cspa
dc.contributor.authorNguyen, Grantspa
dc.contributor.authorCarter, Austinspa
dc.contributor.authorAlvis-Guzman, Nelsonspa
dc.date.accessioned2019-05-27T14:30:40Z
dc.date.available2019-05-27T14:30:40Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/11323/4722spa
dc.description.abstractBackground An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to tracking of the success of tuberculosis control programmes and identification of remaining challenges. We assessed trends in the fatal and non-fatal burden of tuberculosis over the past 25 years for 195 countries and territories. Methods We analysed 10 691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data using the Cause of Death Ensemble model to estimate tuberculosis mortality rates. We analysed all available age-specific and sex-specific data sources, including annual case notifications, prevalence surveys, and estimated cause-specific mortality, to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how observed tuberculosis incidence, prevalence, and mortality differed from expected trends as predicted by the Socio-demographic Index (SDI), a composite indicator based on income per capita, average years of schooling, and total fertility rate. We also estimated tuberculosis mortality and disability-adjusted life-years attributable to the independent effects of risk factors including smoking, alcohol use, and diabetes. Findings Globally, in 2015, the number of tuberculosis incident cases (including new and relapse cases) was 10·2 million (95% uncertainty interval 9·2 million to 11·5 million), the number of prevalent cases was 10·1 million (9·2 million to 11·1 million), and the number of deaths was 1·3 million (1·1 million to 1·6 million). Among individuals who were HIV negative, the number of incident cases was 8·8 million (8·0 million to 9·9 million), the number of prevalent cases was 8·9 million (8·1 million to 9·7 million), and the number of deaths was 1·1 million (0·9 million to 1·4 million). Annualised rates of change from 2005 to 2015 showed a faster decline in mortality (–4·1% [–5·0 to –3·4]) than in incidence (–1·6% [–1·9 to –1·2]) and prevalence (–0·7% [–1·0 to –0·5]) among HIV-negative individuals. The SDI was inversely associated with HIV-negative mortality rates but did not show a clear gradient for incidence and prevalence. Most of Asia, eastern Europe, and sub-Saharan Africa had higher rates of HIV-negative tuberculosis burden than expected given their SDI. Alcohol use accounted for 11·4% (9·3–13·0) of global tuberculosis deaths among HIV-negative individuals in 2015, diabetes accounted for 10·6% (6·8–14·8), and smoking accounted for 7·8% (3·8–12·0). Interpretation Despite a concerted global effort to reduce the burden of tuberculosis, it still causes a large disease burden globally. Strengthening of health systems for early detection of tuberculosis and improvement of the quality of tuberculosis care, including prompt and accurate diagnosis, early initiation of treatment, and regular follow-up, are priorities. Countries with higher than expected tuberculosis rates for their level of sociodemographic development should investigate the reasons for lagging behind and take remedial action. Efforts to prevent smoking, alcohol use, and diabetes could also substantially reduce the burden of tuberculosis.spa
dc.description.abstractAntecedentes La comprensión de las tendencias en la incidencia, prevalencia y mortalidad de la tuberculosis es crucial para rastrear el éxito de los programas de control de la tuberculosis y para identificar los desafíos pendientes. En los últimos 25 años, evaluamos las tendencias en la carga fatal y no mortal de la tuberculosis en 195 países y territorios. Métodos Analizamos 10 691 años de datos vitales de registro, 768 años de datos de autopsias verbales y 361 años de datos de vigilancia de mortalidad utilizando el modelo de conjunto de causas de muerte para estimar las tasas de mortalidad por tuberculosis. Analizamos todas las fuentes de datos disponibles por edad y por sexo, incluidas las notificaciones anuales de casos, las encuestas de prevalencia y la mortalidad por causas específicas, para generar estimaciones coherentes internas de incidencia, prevalencia y mortalidad utilizando DisMod-MR 2.1, un meta bayesiano. - Herramienta de regresión. Se evaluó cómo la incidencia, la prevalencia y la mortalidad observadas de la tuberculosis difirieron de las tendencias esperadas según lo predice el Índice sociodemográfico (SDI), un indicador compuesto basado en el ingreso per cápita, el promedio de años de escolaridad y la tasa de fecundidad total. También estimamos la mortalidad por tuberculosis y los años de vida ajustados por discapacidad atribuibles a los efectos independientes de los factores de riesgo, como el tabaquismo, el consumo de alcohol y la diabetes. Hallazgos A nivel mundial, en 2015, el número de casos incidentes de tuberculosis (incluidos los casos nuevos y de recaída) fue de 10,2 millones (95% de intervalo de incertidumbre 9,2 millones a 11,5 millones), el número de casos prevalentes fue de 10 millones de casos. (9 · 2 millones a 11 · 1 millón), y el número de muertes fue de 1 · 3 millones (1 · 1 millón a 1 · 6 millones). Entre las personas con VIH negativo, el número de casos incidentes fue de 8,8 millones (8 millones a 9 9 millones), el número de casos prevalentes fue de 8,9 millones (8 millones a 9 millones de casos). y el número de muertes fue de 1 · 1 millón (0 · 9 millones a 1 · 4 millones). Las tasas de cambio anualizadas de 2005 a 2015 mostraron una disminución más rápida en la mortalidad (–4 · 1% [–5 · 0 a –3 · 4]) que en la incidencia (–1 · 6% [–1 · 9 a –1 · 2]) y prevalencia (–0 · 7% [–1 · 0 a –0 · 5]) entre individuos VIH negativos. La IDE se asoció inversamente con las tasas de mortalidad por VIH negativas, pero no mostró un gradiente claro para la incidencia y la prevalencia. La mayor parte de Asia, Europa oriental y África subsahariana tenían tasas más altas de carga de tuberculosis VIH-negativa de lo esperado, dada su IDE. El consumo de alcohol representó el 11 · 4% (9 · 3–13 · 0) de las muertes por tuberculosis en personas sin VIH en 2015, la diabetes representó el 10 · 6% (6 · 8–14 · 8) y el consumo de tabaco 7 · 8% (3 · 8–12 · 0).spa
dc.language.isoeng
dc.publisherThe Lancetspa
dc.relation.ispartofDOI:https://doi.org/10.1016/S1473-3099(17)30703-Xspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectTuberculosisspa
dc.subjectIncidenciaspa
dc.subjectPrevalenciaspa
dc.subjectMortalidadspa
dc.subjectTuberculosisspa
dc.subjectIncidencespa
dc.subjectPrevalencespa
dc.subjectMortalityspa
dc.titleThe global burden of tuberculosis: results from the Global Burden of Disease Study 2015spa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1 Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 1005–70. 2 GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and causespecific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117–71. 3 GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and causespecific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–544. 4 US Agency for International Development. Independent assessment of national TB prevalence surveys conducted between 2009−2015. February, 2016. https://www.usaid.gov/sites/default/ files/documents/1864/TB-prevalence-surveys-assessment-2016-508- final.pdf (accessed Sept 30, 2016). 5 WHO. Global tuberculosis report 2016. Geneva: World Health Organization, 2016. 6 Floyd S, Sismanidis C, Yamada N, et al. Analysis of tuberculosis prevalence surveys: new guidance on best-practice methods. Emerg Themes Epidemiol 2013; 10: 10. 7 Anker M, Black RE, Coldham C, et al. A standard verbal autopsy method for investigating causes of death in infants and children. http://www.who.int/csr/resources/publications/surveillance/ whocdscsrisr994.pdf?ua=1 (accessed Oct 18, 2016). 8 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545–602. 9 GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1603–58. 10 Lönnroth K, Raviglione M. The WHO’s new End TB Strategy in the post-2015 era of the Sustainable Development Goals. Trans R Soc Trop Med Hyg 2016; 110: 148–50. 11 GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659–724. 12 Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2095–128. 13 Foreman KJ, Lozano R, Lopez AD, Murray CJ. Modeling causes of death: an integrated approach using CODEm. Popul Health Metr 2012; 10: 1. 14 Ortblad KF, Lozano R, Murray CJ. The burden of HIV: insights from the Global Burden of Disease Study 2010. AIDS 2013; 27: 2003–17. 15 Cox JA, Lukande RL, Lucas S, Nelson AM, Van Marck E, Colebunders R. Autopsy causes of death in HIV-positive individuals in sub-Saharan Africa and correlation with clinical diagnoses. AIDS Rev 2010; 12: 183–94. 16 Ford N, Matteelli A, Shubber Z, et al. TB as a cause of hospitalization and in-hospital mortality among people living with HIV worldwide: a systematic review and meta-analysis. J Int AIDS Soc 2016; 19: 20714. 17 Flaxman AD, Vos T, Murray CJ. An integrative metaregression framework for descriptive epidemiology, first edn. Seattle: University of Washington Press, 2015. 18 Greene WH. Econometric analysis. Harlow: Pearson Education, 2012: 332–44. 19 Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and YLDs for 301 acute and chronic diseases and injuries for 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 743–800. 20 GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 2287–323. 21 Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med 2013; 2013: 828939. 22 Cegielski J, McMurray D. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis 2004; 8: 286–98. 23 Sumpter C, Chandramohan D. Systematic review and meta-analysis of the associations between indoor air pollution and tuberculosis. Trop Med Int Health 2013; 18: 101–08. 24 Food and Agriculture Organization of the UN. FAOSTAT statistics database. http://www.fao.org/faostat/en/?#data/FBS (accessed Sept 29, 2017). 25 WHO. WHO Global Health Observatory data repository. Global Information System on Alcohol and Health (GISAH). http://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed March 1, 2016). 26 Global Health Data Exchange. http://ghdx.healthdata.org/search/ site/tobacco%20use (accessed Feb 16, 2016). 27 WHO. Tuberculosis financing and funding gaps. http://www.who.int/ tb/WHO_GF_TB_financing_factsheet.pdf (accessed Oct 14, 2016). 28 Dieleman J, Campbell M, Chapin A, et al. Evolution and patterns of global health financing 1995–2014. Lancet 2017; 389: 1981–2004. 29 Dye C. Tuberculosis 2000–2010: control, but not elimination. Int J Tuberc Lung Dis 2000; 4 (12 suppl 2): S146–52. 30 Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J. Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis 2009; 9: 91. 31 Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health 2008; 8: 1. 32 Sreeramareddy CT, Qin ZZ, Satyanarayana S, Subbaraman R, Pai M. Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Int J Tuberc Lung Dis 2014; 18: 255–66. 33 Dye C, Williams BG. The population dynamics and control of tuberculosis. Science 2010; 328: 856–61. 34 Jochem K, Walley J. Determinants of the tuberculosis burden in populations. In: Porter JD, Grange JM, eds. Tuberculosis—an interdisciplinary perspective. London: Imperial College Press, 1999: 33–48. 35 Golub J, Bur S, Cronin W, et al. Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 2006; 10: 24–30. 36 Blumberg HM, Ernst JD. The challenge of latent TB infection. JAMA 2016; 316: 931–33. 37 Hossain S, Quaiyum MA, Zaman K, et al. Socio economic position in TB prevalence and access to services: results from a population prevalence survey and a facility-based survey in Bangladesh. PLoS One 2012; 7: e44980. 38 Long Q, Li Y, Wang Y, et al. Barriers to accessing TB diagnosis for rural-to-urban migrants with chronic cough in Chongqing, China: a mixed methods study. BMC Health Serv Res 2008; 8: 1. 39 Buu T, Lönnroth K, Quy H. Initial defaulting in the National Tuberculosis Programme in Ho Chi Minh City, Vietnam: a survey of extent, reasons and alternative actions taken following default. Int J Tuberc Lung Dis 2003; 7: 735–41. 40 Botha E, Den Boon S, Verver S, et al. Initial default from tuberculosis treatment: how often does it happen and what are the reasons? Int J Tuberc Lung Dis 2008; 12: 820–23. 41 Afutu F, Zachariah R, Hinderaker S, et al. High initial default in patients with smear-positive pulmonary tuberculosis at a regional hospital in Accra, Ghana. Trans R Soc Trop Med Hyg 2012; 106: 511–13. 42 De Lima YV, Evans D, Page-Shipp L, et al. Linkage to care and treatment for TB and HIV among people newly diagnosed with TB or HIV-associated TB at a large, inner city South African hospital. PLoS One 2013; 8: e49140. 43 Dobler CC. Screening strategies for active tuberculosis: focus on cost-effectiveness. Clinicoecon Outcomes Res 2016; 8: 335–47. 44 Calligaro GL, Zijenah LS, Peter JG, et al. Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomised controlled trial. Lancet Infect Dis 2017; 17: 441–50. 45 Lönnroth K, Migliori GB, Abubakar I, et al. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J 2015; 45: 928–52. 46 Wiker HG, Mustafa T, Bjune GA, Harboe M. Evidence for waning of latency in a cohort study of tuberculosis. BMC Infect Dis 2010; 10: 37. 47 Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 1974; 99: 131–38. 48 Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med 2003; 167: 1472–77. 49 Davies P. TB in the elderly in industrialised countries. Int J Tuberc Lung Dis 2007; 11: 1157–59. 50 Pratt RH, Winston CA, Kammerer JS, Armstrong LR. Tuberculosis in older adults in the United States, 1993–2008. J Am Geriatr Soc 2011; 59: 851–57. 51 Watkins R, Plant A. Does smoking explain sex differences in the global tuberculosis epidemic? Epidemiol Infect 2006; 134: 333–39. 52 Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 2014; 209 (suppl 3): S100–06. 53 Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med 2009; 6: e1000199. 54 Rehm J, Samokhvalov AV, Neuman MG, et al. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009; 9: 450. 55 Oeltmann JE, Kammerer JS, Pevzner ES, Moonan PK. Tuberculosis and substance abuse in the United States, 1997–2006. Arch Intern Med 2009; 169: 189–97 56 Rehm J, Baliunas D, Borges GL, et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. Addiction 2010; 105: 817–43. 57 Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis 2009; 9: 737–46. 58 Nelson S, Zhang P, Bagby GJ, Happel KI, Raasch CE. Alcohol abuse, immunosuppression, and pulmonary infection. Curr Drug Abuse Rev 2008; 1: 56–67. 59 O’Leary SM, Coleman MM, Chew WM, et al. Cigarette smoking impairs human pulmonary immunity to Mycobacterium tuberculosis. Am J Respir Crit Care Med 2014; 190: 1430–36. 60 Szabo G. Alcohol’s contribution to compromised immunity. Alcohol Health Res World 1997; 21: 30–41. 61 Uplekar M, Atre S, Wells WA, et al. Mandatory tuberculosis case notification in high tuberculosis-incidence countries: policy and practice. Eur Respir J 2016; 48: 1571–81. 62 Anderson L, Broekmans J, Floyd K, Glaziou P, Sismanidis B, Zignol M. Strengthening tuberculosis surveillance: rationale and proposed areas of work 2016–2020. http://www.who.int/tb/advisory_bodies/impact_ measurement_taskforce/meetings/tf6_background_2a_strengthening_ surveillance.pdf?ua=1 (accessed Sept 8, 2017). 63 Lopez A, Mikkelsen L, Rampatige R, et al. Strengthening civil registration and vital statistics for births, deaths and causes of death. Resource kit. Geneva: World Health Organization, 2013. 64 Abubakar I, Bassili A, Bierrenbach A, et al. Assessing tuberculosis under-reporting through inventory studies. Geneva: World Health Organization, 2012. 65 Begg S, Rao C, Lopez AD. Design options for sample-based mortality surveillance. Int J Epidemiol 2005; 34: 1080–87. 66 WHO. Global tuberculosis report 2015. Geneva: World Health Organization, 2015. 67 Dodd PJ, Sismanidis C, Seddon JA. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study. Lancet Infect Dis 2016; 16: 1193–201. 68 Jenkins HE, Tolman AW, Yuen CM, et al. Incidence of multidrug-resistant tuberculosis disease in children: systematic review and global estimates. Lancet 2014; 383: 1572–79. 69 James SL, Flaxman AD, Murray CJ. Performance of the Tariff Method: validation of a simple additive algorithm for analysis of verbal autopsies. Popul Health Metr 2011; 9: 31. 70 Lozano R, Lopez AD, Atkinson C, Naghavi M, Flaxman AD, Murray CJ. Performance of physician-certified verbal autopsies: multisite validation study using clinical diagnostic gold standards. Popul Health Metr 2011; 9: 32. 71 Murray CJ, Lozano R, Flaxman AD, et al. Using verbal autopsy to measure causes of death: the comparative performance of existing methods. BMC Med 2014; 12: 5. 72 Dowell SF, Blazes D, Desmond-Hellmann S. Four steps to precision public health. Nature 2016; 540: 189–91. 73 Cazabon D, Alsdurf H, Satyanarayana S, et al. Quality of tuberculosis care in high burden countries: the urgent need to address gaps in the care cascade. Int J Infect Dis 2017; 56: 111–16.spa
dc.title.translatedLa carga global de la tuberculosis: resultados del Estudio de la carga mundial de la enfermedad 2015spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International