Mostrar el registro sencillo del ítem

dc.contributor.authorZunt, Joseph Raymondspa
dc.contributor.authorKassebaum, Nicholas Jspa
dc.contributor.authorBlake, Natachaspa
dc.contributor.authorGlennie, Lindaspa
dc.contributor.authorWright, Clairespa
dc.contributor.authorNichols, Emmaspa
dc.contributor.authorAbd-Allah, Foadspa
dc.contributor.authorAbdela, Jemalspa
dc.contributor.authorAbdelalim, Ahmedspa
dc.contributor.authorAlvis-Guzman, Nelsonspa
dc.date.accessioned2019-06-04T13:20:51Z
dc.date.available2019-06-04T13:20:51Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/11323/4772spa
dc.description.abstractBackground Acute meningitis has a high case-fatality rate and survivors can have severe lifelong disability. We aimed to provide a comprehensive assessment of the levels and trends of global meningitis burden that could help to guide introduction, continuation, and ongoing development of vaccines and treatment programmes. Methods The Global Burden of Diseases, Injuries, and Risk Factors (GBD) 2016 study estimated meningitis burden due to one of four types of cause: pneumococcal, meningococcal, Haemophilus influenzae type b, and a residual category of other causes. Cause-specific mortality estimates were generated via cause of death ensemble modelling of vital registration and verbal autopsy data that were subject to standardised data processing algorithms. Deaths were multiplied by the GBD standard life expectancy at age of death to estimate years of life lost, the mortality component of disability-adjusted life-years (DALYs). A systematic analysis of relevant publications and hospital and claims data was used to estimate meningitis incidence via a Bayesian meta-regression tool. Meningitis deaths and cases were split between causes with meta-regressions of aetiological proportions of mortality and incidence, respectively. Probabilities of long-term impairment by cause of meningitis were applied to survivors and used to estimate years of life lived with disability (YLDs). We assessed the relationship between burden metrics and Socio-demographic Index (SDI), a composite measure of development based on fertility, income, and education.spa
dc.description.abstractAntecedentes La meningitis aguda tiene una alta tasa de letalidad y los sobrevivientes pueden tener una discapacidad severa de por vida. Apuntamos proporcionar una evaluación integral de los niveles y tendencias de la carga de meningitis global que podría ayudar a guiar Introducción, continuación y desarrollo continuo de vacunas y programas de tratamiento. Métodos La carga mundial de enfermedades, lesiones y factores de riesgo (GBD) estudio de 2016 estimó la carga de meningitis Debido a uno de los cuatro tipos de causas: neumocócica, meningocócica, Haemophilus influenzae tipo b, y un residuo Categoría de otras causas. Las estimaciones de mortalidad por causa específica se generaron a través de modelos de causa de muerte de Registro vital y datos de autopsia verbal que estaban sujetos a algoritmos de procesamiento de datos estandarizados. Las muertes fueron multiplicado por la esperanza de vida estándar de la GBD a la edad de la muerte para estimar los años de vida perdidos, el componente de mortalidad de años de vida ajustados por discapacidad (AVAD). Un análisis sistemático de publicaciones relevantes y datos de hospitales y reclamaciones. se utilizó para estimar la incidencia de meningitis a través de una herramienta de meta-regresión bayesiana. Meningitis muertes y casos se dividieron entre causas con metarregresiones de proporciones etiológicas de mortalidad e incidencia, respectivamente. Probabilidades del deterioro a largo plazo por causa de la meningitis se aplicaron a los sobrevivientes y se utilizaron para estimar los años de vida con los que vivían discapacidad (YLDs). Se evaluó la relación entre las métricas de carga y el Índice sociodemográfico (IDE), una Medida compuesta de desarrollo basada en la fertilidad, el ingreso y la educación.spa
dc.language.isoeng
dc.publisherThe Lancetspa
dc.relation.ispartofhttps://doi.org/10.1016/S1474-4422(18)30387-9spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectMeningitis agudaspa
dc.subjectLetalidadspa
dc.subjectAlta tasaspa
dc.subjectDiscapacidad severaspa
dc.subjectAcute meningitisspa
dc.subjectLethalityspa
dc.subjectHigh ratespa
dc.subjectSevere disabilityspa
dc.titleGlobal, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016spa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1 Müller O, Krawinkel M. Malnutrition and health in developing countries. CMAJ 2005; 173: 279–86. 2 Baker M, McNicholas A, Garrett N, et al. Household crowding a major risk factor for epidemic meningococcal disease in Auckland children. Pediatr Infect Dis J 2000; 19: 983–90. 3 Miller L, Arakaki L, Ramautar A, et al. Elevated risk for invasive meningococcal disease among persons with HIV. Ann Intern Med 2014; 160: 30–37. 4 Hodgson A, Smith T, Gagneux S, et al. Risk factors for meningococcal meningitis in northern Ghana. Trans R Soc Trop Med Hyg 2001; 95: 477–80. 5 Battersby AJ, Knox-Macaulay HHM, Carrol ED. Susceptibility to invasive bacterial infections in children with sickle cell disease. Pediatr Blood Cancer 2010; 55: 401–06. 6 Erdem H, Inan A, Guven E, et al. The burden and epidemiology of community-acquired central nervous system infections: a multinational study. Eur J Clin Microbiol Infect Dis 2017; 36: 1595–611. 7 Kohli-Lynch M, Russell NJ, Seale AC, et al. Neurodevelopmental impairment in children after Group B streptococcal disease worldwide: systematic review and meta-analyses. Clin Infect Dis 2017; 65: S190–99. 8 Ramakrishnan M, Ulland AJ, Steinhardt LC, Moïsi JC, Were F, Levine OS. Sequelae due to bacterial meningitis among African children: a systematic literature review. BMC Med 2009; 7: 47. 9 Hasbun R, Rosenthal N, Balada-Llasat JM, et al. Epidemiology of meningitis and encephalitis in the United States, 2011–2014. Clin Infect Dis 2017; 65: 359–63. 10 Hajjeh R, Mulholland K, Schuchat A, Santosham M. Progress towards demonstrating the impact of Haemophilus influenzae type b conjugate vaccines globally. J Pediatr 2013; 163: S1–3. 11 Ayieko P, Akumu AO, Griffiths UK, English M. The economic burden of inpatient paediatric care in Kenya: household and provider costs for treatment of pneumonia, malaria and meningitis. Cost Eff Resour Alloc 2009; 7: 3. 12 Ai J, Xie Z, Liu G, et al. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study. BMC Infect Dis 2017; 17: 494. 13 Conklin L, Loo JD, Kirk J, et al. Systematic review of the effect of pneumococcal conjugate vaccine dosing schedules on vaccine-type invasive pneumococcal disease among young children. Pediatr Infect Dis J 2014; 33: S109–18. 14 Trotter CL, Lingani C, Fernandez K, et al. Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect Dis 2017; 17: 867–72. 15 International Vaccine Access Center. VIEW-hub report: global vaccine introduction and implementation 2018. http://www.viewhub.org/resourcesfile/VIEW-hubReports_Resources/2018_03/ IVAC_VIEW-hub_Report%202018Mar.pdf (accessed Oct 25, 2018). 16 Cuevas LE, Jeanne I, Molesworth A, et al. Risk mapping and early warning systems for the control of meningitis in Africa. Vaccine 2007; 25: A12–17. 17 WHO. Epidemic meningitis control in countries of the African meningitis belt, 2017. Wkly Epidemiol Rec 2018; 93: 173–84. 18 Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1151–210. 19 Vos T, Abajobir AA, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1211–59. 20 Barber RM, Fullman N, Sorensen RJD, et al. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet 2017; 390: 231–66. 21 Edmond K, Clark A, Korczak VS, Sanderson C, Griffiths UK, Rudan I. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infect Dis 2010; 10: 317–28. 22 Salomon JA, Haagsma JA, Davis A, et al. Disability weights for the Global Burden of Disease 2013 study. Lancet Glob Health 2015; 3: e712–23. 23 GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1345–422. 24 Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet 2017; 390: 2171–82. 25 Meningitis Research Foundation. A global vision for meningitis by 2030 and an action plan to get there. 2017. https://vaccineresources. org/details.php?i=2454 (accessed May 6, 2018). 26 Wenger JD. Epidemiology of Haemophilus influenzae type b disease and impact of Haemophilus influenzae type b conjugate vaccines in the United States and Canada. Pediatr Infect Dis J 1998; 17: S132–36. 27 WHO. Haemophilus influenzae type b (Hib) vaccination position paper—September 2013. Wkly Epidemiol Rec 2013; 88: 413–28. 28 Andrews NJ, Waight PA, Burbidge P, et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect Dis 2014; 14: 839–46. 29 Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011; 378: 1962–73. 30 Palmgren H. Meningococcal disease and climate. Glob Health Action 2009; published online Nov 11. DOI:10.3402/gha. v2i0·2061. 31 Salisbury D, Ramsay M. Chapter 22: Meningococcal. In: Immunisation against infectious disease. London: Department of Health, 2006: 235–53. 32 Gething PW, Casey DC, Weiss DJ, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med 2016; 375: 2435–45. 33 Misra UK, Kalita J, Prabhakar S, Chakravarty A, Kochar D, Nair PP. Cerebral malaria and bacterial meningitis. Ann Indian Acad Neurol 2011; 14: S35–39. 34 Desmond NA, Nyirenda D, Dube Q, et al. Recognising and treatment seeking for acute bacterial meningitis in adults and children in resource-poor settings: a qualitative study. PLoS One 2013; 8: e68163. 35 Pong A, Bradley JS. Bacterial meningitis and the newborn infant. Infect Dis Clin North Am 1999; 13: 711–33. 36 Waite T, Telisinghe L, Gobin M, et al. Systematic review on rapid diagnostic tests for meningococcal meningitis disease in sub-Saharan Africa: WHO Protocol to inform the revision of meningitis outbreak response guidelines. Geneva: World Health Organization, 2014. 37 Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis 2006; 42: 377–82. 38 Lingani C, Bergeron-Caron C, Stuart JM, et al. Meningococcal meningitis surveillance in the African Meningitis Belt, 2004–2013. Clin Infect Dis 2015; 61 (suppl 5): S410–15. 39 Kambiré D, Soeters HM, Ouédraogo-Traoré R, et al. Early impact of 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis-Burkina Faso, 2014–2015. J Infect 2018; 76: 270–79. 40 WHO. Disease burden and mortality estimates. Cause-specific mortality, 2000–2016. http://www.who.int/healthinfo/global_ burden_disease/estimates/en/ (accessed Aug 29, 2018). 41 Furyk JS, Swann O, Molyneux E. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health 2011; 16: 672–79. 42 Okike IO, Johnson AP, Henderson KL, et al. Incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United Kingdom and Republic of Ireland: prospective, enhanced, national population-based surveillance. Clin Infect Dis 2014; 59: e150–57. 43 Davison K, Ramsay M. The epidemiology of acute meningitis in children in England and Wales. Arch Dis Child 2003; 88: 662–64. 44 Boisier P, Maïnassara HB, Sidikou F, Djibo S, Kairo KK, Chanteau S. Case-fatality ratio of bacterial meningitis in the African meningitis belt: we can do better. Vaccine 2007; 25 (suppl 1): A24–29. 45 Brooks R, Woods CW, Benjamin DK, Rosenstein NE. Increased case-fatality rate associated with outbreaks of Neisseria meningitidis infection, compared with sporadic meningococcal disease, in the United States, 1994–2002. Clin Infect Dis 2006; 43: 49–54. 46 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1151–210. 47 GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1260–344. 48 GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1211–59. 49 GBD 2016 Mortality Collaborators. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1084–150. 50 Anderson V, Anderson P, Grimwood K, Nolan T. Cognitive and executive function 12 years after childhood bacterial meningitis: effect of acute neurologic complications and age of onset. J Pediatr Psychol 2004; 29: 67–81. 51 Madhi SA, Cutland CL, Jose L, et al. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: a randomised phase 1b/2 trial. Lancet Infect Dis 2016; 16: 923–34.spa
dc.title.translatedCarga global, regional y nacional de meningitis, 1990–2016: un análisis sistemático para el Estudio de la carga mundial de la enfermedad 2016spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International