Show simple item record

dc.creatorGuzmán, Andres
dc.creatorCabello Eras, Juan José
dc.creatorSilva-Casarín, Rodolfo
dc.creatorBastidas-Arteaga, Emilio
dc.creatorHorrillo-Caraballo, José
dc.creatorRueda-Bayona, Juan Gabriel
dc.description.abstractGlobal offshore wind technology shows increasing progress evidenced in the recent reports of wind power capacity, expectations of market expansion and international research projects. Colombia is privileged with several types of natural resources (e.g. wind, sun, water) but there is not a clear legal context to regulate sustainable and safe exploitation of the offshore wind energy considered non-conventional. The development of offshore wind technology in Colombia could attend the energy demand when the hydroelectric system presents low electricity generation during dry hydrological conditions and El Niño – South Oscillations events. This paper analyses international actions that have motivated different countries to establish strategies to reduce CO2, and their advances and challenges in implementing offshore wind technology. The review of the administrative framework of renewable energy in Colombia proved the lack of information for implementing offshore wind technology. Furthermore, the analysis of several studies of marine energies showed the need to increase the knowledge of offshore wind energy. The local applying projects to generate electricity from non-conventional renewable energies are not considering offshore wind energy projects. Hence, this research analysed wind speed and calculated wind power density at different height levels, what evidenced magnitudes and positive trends what justify to increase the research in offshore wind energy in Colombia. As a result, the present document compiles technical, economic, administrative and legal information of the renewable energies in Colombia that may be used for taking decisions of different stakeholders and evidences the potential implementing offshore wind farms in areas near to the Colombian Caribbean coast. Colombia has great resources to implement offshore wind energy technologies, reducing the dependence on fossil fuels and substituting other systems when they cannot guarantee the energy offer.
dc.publisherJournal of Cleaner Productionspa
dc.rightsCC0 1.0 Universal*
dc.subjectWind energyspa
dc.subjectRenewable energyspa
dc.subjectWind turbinesspa
dc.titleRenewables energies in Colombia and the opportunity for the offshore wind technologyspa
dcterms.referencesAhuja, D., Tatsutani, M., 2009. Sustainable energy for developing countries. SAPIENS Surv. Perspect. Integrating Environ. Soc. Álvarez Castañeda, W.F., Martínez Tejada, L.A., Alvarado Fajardo, A.C., 2013. Aplicación de la ecuación de Weibull para determinar potencial eólico en Tunja-Colombia, in: XX Simposio Peruano de energía solar - XXSPES. Presented at the XX Simposio Peruano de energía solar, APES, Asociación Peruana de Energía Solar y del Ambiente, Tacna, Perú, p. 8. Alvarez-Silva, O., Osorio, A.F., 2015. Salinity gradient energy potential in Colombia considering site specific constraints. Renew. Energy 74, 737–748. Andrade, C.A., Barton, E.D., 2000. Eddy development and motion in the Caribbean Sea. J. Geophys. Res. Oceans 105, 26191–26201. Ávila, J.D., 2017. Realidades y necesidades del licenciamiento en los proyectos de generación por fuentes no convencionales, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Baker, R., Safarzade, E., 2009. Azerbaijan Alternative Energy Sector Analysis and Roadmap (No. RCDTA 7274). ADB, Asian Development Bank. Botero B, S., Isaza C, F., Valencia, A., 2010. Evaluation of methodologies for remunerating wind power’s reliability in Colombia. Renew. Sustain. Energy Rev. 14, 2049–2058. Breton, S.-P., Moe, G., 2009. Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Energy 34, 646–654. British Standard, 2006. Wind Turbines: Part 1 Design requirements BS EN 61400-1:2005. Burch, S., 2010. In pursuit of resilient, low carbon communities: An examination of barriers to action in three Canadian cities. Energy Policy 38, 7575–7585. Castillo-Ramírez, A., Mejía-Giraldo, D., Molina-Castro, J.D., 2017. Fiscal incentives impact for RETs investments in Colombia. Energy Sources Part B Econ. Plan. Policy 12, 759–764. Castro Ferreira, G., 2017. Esquema regulatorio, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Riohacha, La Guajira, Colombia. Cheng, P.W., 2002. A reliability based design methodology for extreme responses of offshore wind turbines. DUWIND Delft University Wind Energy Research Institute, Delft, The Netherlands. CIOH, 2010. Climatología de los principales puertos del caribe colombiano - Riohacha [WWW Document]. URL (accessed 1.20.19). Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D., de Palacio-Rodríguez, C., 2016. Offshore wind energy: A review of the current status, challenges and future development in Spain. Renew. Sustain. Energy Rev. 64, 1–18. Contreras, J., Rodríguez, Y.E., 2016. Incentives for wind power investment in Colombia. Renew. Energy 87, 279–288. CREG, 2018a. Comisión de Regulación de Energía y Gas - CREG - Mission and Vision [WWW Document]. URL (accessed 3.11.18). CREG, 2018b. Resolución 015 de 2018 [WWW Document]. URL a90525822900064dac/$FILE/Creg015-2018.pdf (accessed 3.10.18). CREG, 2017. Circular N°013 [WWW Document]. URL ef052580eb005239dc?OpenDocument (accessed 3.11.18). CREG, 2016a. Resolución 243 de 2016 [WWW Document]. URL 7d3052580c0004f7b6a/$FILE/Creg243-2016.pdf (accessed 3.11.18). CREG, 2016b. Resolución 026 de 2016 [WWW Document]. URL 62d05257f70004c5277?OpenDocument (accessed 3.11.18). CREG, 2016c. Alternativas para la integración de fuentes no convencionales de energía renovable (FNCER) al parque generador. CREG, 2015a. Resolución 024 de 2015 [WWW Document]. URL b8c05257e2d007cf0b0/$FILE/Creg024-2015.pdf (accessed 3.11.18). CREG, 2015b. Resolución 061 de 2015 [WWW Document]. URL 2f905257e4a006d8d5a/$FILE/Creg061-2015.pdf (accessed 3.11.18). CREG, 2014a. Resolución 132 de 2014 [WWW Document]. URL (accessed 3.11.18). CREG, 2014b. Decreto 2469 de 2014 [WWW Document]. URL (accessed 3.11.18). CREG, 2013. Resolución 153 de 2013 [WWW Document]. URL$f=templates$3.0 (accessed 3.11.18). CREG, 2010. Resolución 005 de 2010 [WWW Document]. URL (accessed 3.15.18). CREG, 1996. Resolución 085 de 1996 [WWW Document]. URL Devis-Morales, A., Montoya-Sánchez, R.A., Bernal, G., Osorio, A.F., 2017. Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Appl. Ocean Res. 69, 10– 26. Devis-Morales, A., Montoya-Sánchez, R.A., Osorio, A.F., Otero-Díaz, L.J., 2014. Ocean thermal energy resources in Colombia. Renew. Energy 66, 759–769. Dinero, 2015. El fenómeno de El Niño revive la posibilidad de un apagón en Colombia. Dinero -Carátula. Dudhia, J., Gill, D., Manning, K., Wang, W., Bruyere, C., Kelly, S., Lackey, K., 2004. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. Edsand, H.-E., 2017. Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technol. Soc. 49, 1–15. Elliott, D., Aspliden, C., Gower, G., Holladay, C., Schwartz, M., 1987. Wind Energy Resource Assessment of the Caribbean and Central America (No. PNL-6234, 971424). U.S. Department of Energy, Richland, Washington. ESMAP, 2010. Review of policy framework for increased reliance on wind energy in Colombia. Energy Unit, Sustainable Development Department, The World Bank. Flavin, C., Gonzalez, M., Majano, A.M., Ochs, A., da Rocha, M., Tagwerker, P., 2014. Study on the Development of the Renewable Energy Market in Latin America and the Caribbean (Working paper No. OVE/WP-02/14, IDB RPF #14-002). Inter-American Development Bank. Franco-Cardona, C.J., Castañeda-Riascos, M., Valencia-Arias, A., Bermúdez-Hernández, J., 2015. The energy trilemma in the policy design of the electricity market. DYNA 82, 160–169. Froese, M., 2018. Offshore wind market expected to exceed $60 billion by 2024 [WWW Document]. Wind. Eng. Dev. URL (accessed 12.5.18). Gaona, E.E., Trujillo, C.L., Guacaneme, J.A., 2015. Rural microgrids and its potential application in Colombia. Renew. Sustain. Energy Rev. 51, 125–137. Gatzert, N., Kosub, T., 2016. Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. Renew. Sustain. Energy Rev. 60, 982–998. GE Renewable Energy, 2018. World’s Largest Offshore Wind Turbine [WWW Document]. Haliade-X Offshore Wind Turbine Platf. URL (accessed 12.5.18). Green, R., Vasilakos, N., 2011. The economics of offshore wind. Energy Policy, Special Section on Offshore wind power planning, economics and environment 39, 496–502. GWEC, 2016. Global Wind Report - Annual Market Update 2016. GWEC, Global Wind Energy Council. Ho, A., Mbistrova, A., Corbetta, G., 2016. The European offshore wind industry - key trends and statistics 2015. EWEA, The European Wind Energy Association. Hoogwijk, M., Graus, W., 2008. Global potential of renewable energy sources: a literature assessment (Background report No. PECSNL072975). ECOFIS. IDEAM, 2018. Atlas Interactivo - Vientos - IDEAM [WWW Document]. URL (accessed 3.12.18). IPSE, 2018. IPSE - Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas [WWW Document]. IPSE. URL (accessed 3.15.18). IRENA, 2014. Pan-Arab Renewable Energy Strategy 2030, Roadmap of Actions for Implementation. IRENA, International Renewable Energy Agency. Jimenez, M., Franco, C.J., Dyner, I., 2016. Diffusion of renewable energy technologies: The need for policy in Colombia. Energy 111, 818–829. Kaplan, Y.A., 2015. Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renew. Sustain. Energy Rev. 43, 562–568. Kota, S., Bayne, S.B., Nimmagadda, S., 2015. Offshore wind energy: A comparative analysis of UK, USA and India. Renew. Sustain. Energy Rev. 41, 685–694. Lee, M.E., Kim, G., Jeong, S.-T., Ko, D.H., Kang, K.S., 2013. Assessment of offshore wind energy at Younggwang in Korea. Renew. Sustain. Energy Rev. 21, 131–141. Mejía, J.M., Chejne, F., Smith, R., Rodríguez, L.F., Fernández, O., Dyner, I., 2006. Simulation of wind energy output at Guajira, Colombia. Renew. Energy 31, 383–399. MEM, 2011. Moroccan project of wind energy 2.000 MW [WWW Document]. URL (accessed 3.15.18). Meyer, L., Pachauri, R.K., 2015. Climate Change 2014: Synthesis Report. IPCC - Intergovernmental Panel on Climate Change, Geneva, Switzerland. MINMINAS, 2018. Misión y visión- Ministerio de Minas y Energía [WWW Document]. URL (accessed 3.15.18). MINMINAS, 2017. Decreto 348 de 2017 [WWW Document]. URL 0MARZO%20DE%202017.pdf (accessed 3.11.18). Murillo, L.G., 2017. La paz está en nuestra naturaleza, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Riohacha, La Guajira, Colombia. Nesamalar, J.J.D., Venkatesh, P., Raja, S.C., 2017. The drive of renewable energy in Tamilnadu: Status, barriers and future prospect. Renew. Sustain. Energy Rev. 73, 115–124. Netherlands Enterprise Agency, 2015. Offshore wind energy in the Netherlands. Netherlands Enterprise Agency, Utrecht, Netherlands. NOAA, 2016. NCEP North American Regional Reanalysis: NARR [WWW Document]. URL NRF, 2012. Renewable energy in Morocco [WWW Document]. URL (accessed 3.15.18). Olaya, Y., Arango-Aramburo, S., Larsen, E.R., 2016. How capacity mechanisms drive technology choice in power generation: The case of Colombia. Renew. Sustain. Energy Rev. 56, 563–571. Ordóñez, G., Osma, G., Vergara, P., Rey, J., 2014. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia. IOP Conf. Ser. Mater. Sci. Eng. 59, 012004. Ortega-Arango, S., 2010. Estudio de aprovechamiento de la energía del oleaje en Isla Fuerte (Caribe colombiano) (Master Thesis). Universidad Nacional de Colombia, Medellín, Colombia. Ortiz, R.P., 2017. Las energías renovables en la matriz energética de Colombia, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Osorio, A.F., Ortega, S., Arango-Aramburo, S., 2016. Assessment of the marine power potential in Colombia. Renew. Sustain. Energy Rev. 53, 966–977. Pabón Hernández, S.M., 2018. Geospatial assessment of the wind energy for an onshore project in the Caribbean region of Colombia, in: 7th Academic International Workshop Advances in Cleaner Production “Cleaner Production for Achieving Sustainable Develpment Goals.” Presented at the 7th International workshop advances in cleaner production, Barranquilla, Colombia, p. 197. Perdomo Delgado, D.A., Jaimes Herrera, M.T., Almeira, J.E., 2014. La energía eólica como energía alternativa para el futuro de Colombia. Centauro 6, 111–120. Pereira Blanco, M.J., 2015. Relación entre energía, medio ambiente y desarrollo económico a partir del análisis jurídico de las energías renovables en Colombia. Saber Cienc. Lib. 10, 35–60. Pérez Bedoya, E., Osorio Osorio, J.A., 2002. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Estrategias y Desarrollo. Pérez-Denicia, E., Fernández-Luqueño, F., Vilariño-Ayala, D., Manuel Montaño-Zetina, L., Alfonso Maldonado-López, L., 2017. Renewable energy sources for electricity generation in Mexico: A review. Renew. Sustain. Energy Rev. 78, 597–613. Perveen, R., Kishor, N., Mohanty, S.R., 2014. Off-shore wind farm development: Present status and challenges. Renew. Sustain. Energy Rev. 29, 780–792. Prias Caicedo, O.F., 2010a. Programa de uso racional y eficiente de energía y fuentes no convencionales - PROURE, Plan de acción 2010-2015. MINMINAS - Ministerio de Minas y Energía, Bogotá, Colombia. Prias Caicedo, O.F., 2010b. Programa de uso racional y eficiente de energía y fuentes no convencionales - PROURE, Plan de acción 2010-2015. MINMINAS - Ministerio de Minas y Energía, Bogotá, Colombia. Realpe Jimenez, A., Diazgranados, J.A., Acevedo Morantes, M.T., 2012. Electricity generation and wind potential assessment in regions of Colombia. DYNA 79, 116–122. Renewables First, 2018. What is the wind class of a wind turbine? Renew. First - Hydro Wind Co. URL (accessed 12.5.18). Resch, G., Panzer, C., Ortner, A., 2014. 2030 RES targets for Europe - a brief pre-assessment of feasibility and impacts. Vienna University of Technology, Institute of Energy systems and Electric Drives, Energy Economics Group (EEG), Vienna, Austria. Ricaurte-Villota, C., Bastidas Salamanca, M.L. (Eds.), 2017. Regionalización oceanográfica: una visión dinámica del caribe, Publicaciones Especiales de INVEMAR. INVEMAR, Santa Marta, D.T.C.H., Colombia. Richard, C., 2018. UK and China to open offshore wind research centre [WWW Document]. URL (accessed 12.6.18). Richard, C., 2017. Offshore capacity grows by 10% in H1 2017 [WWW Document]. URL (accessed 12.5.18). Rodrigues, S., Restrepo, C., Kontos, E., Teixeira Pinto, R., Bauer, P., 2015. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 49, 1114–1135. Román, R., Cansino, J.M., Rodas, J.A., 2018. Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications. Renew. Energy 116, 402–411. Rueda Bayona, J.G., 2017. Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore (PhD Thesis). Universidad del Norte, Barranquilla, Colombia. Rueda Bayona, J.G., 2015. Caracterización hidromecánica de plataformas marinas en aguas intermedias sometidas a cargas de oleaje y corriente mediante modelación numérica. Rueda-Bayona, J., Elles, C., Sánchez, E., González, Á., Rivillas, D.G., 2016. Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster kmedias. Rev. Tecnura 20, 55–68. Rueda-Bayona, J.G., Osorio-Arias, A.F., Guzmán, A., Rivillas-Ospina, G., 2019. Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering. J. Waterw. Port Coast. Ocean Eng. 145, 05018010(1–16). Ruiz, B.J., Rodríguez-Padilla, V., 2006. Renewable energy sources in the Colombian energy policy, analysis and perspectives. Energy Policy 34, 3684–3690. SEI, 2002. Cost Benefit Analysis of Government support options for offshore wind energy. SEI, Sustainable Energy Ireland, Ireland. Senado de la República de Colombia, 2015. Ley 1753 de 2015 [WWW Document]. URL (accessed 3.16.18). Senado de la República de Colombia, 2014. Ley 1715 de 2014 [WWW Document]. URL (accessed 3.16.18). Senado de la República de Colombia, 2001. Ley 697 de 2001 [WWW Document]. URL (accessed 12.5.18). Statista, 2018. Cumulative offshore wind capacity by country 2017 | Statistic [WWW Document]. Statista. URL (accessed 12.5.18). Superintendencia de Industria y Comercio, 2018. Superintendencia de Industria y Comercio - República de Colombia [WWW Document]. URL (accessed 3.15.18). Superservicios, 2018. Superservicios - Superintendencia de Servicios Públicos Domiciliarios - República de Colombia [WWW Document]. URL (accessed 3.15.18). Syndicat des énergies renouvables, 2013. Une feuille de route pour l’éolien en mer: 15000 MW en 2030. Syndicat des énergies renouvables, Paris. United Nations Climate Change, 2017. The Paris Agreement [WWW Document]. URL (accessed 12.2.18). UPME, 2018. UPME - Unidad de Planeación Minero Energética [WWW Document]. URL (accessed 3.15.18). UPME, 2016a. Comunicado de Prensa No 002-2016 [WWW Document]. URL (accessed 3.15.18). UPME, 2016b. Plan indicativo de expansión de cobertura de energía eléctrica, PIEC 2016-2020 [WWW Document]. URL 2020_PublicarDic202016.pdf UPME, 2015a. Integración de las energías renovables no convencionales en Colombia. UPME, Unidad de Planeación Minero Energética, Bogotá, Colombia. UPME, 2015b. Plan de expansión de referencia generación - transmisión 2015 - 2029 [WWW Document]. URL 2029/Plan_GT_2015-2029_VF_22-12-2015.pdf UPME, 2015c. Resolución 281 de 2015 [WWW Document]. URL (accessed 3.15.18). U.S. Department of Energy, 2008. 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply (No. DOE/GO--102008-2567, 1216732). U.S. Department of Energy, United States of America. Valencia, J., 2017. Hoja de ruta para la incorporación de energías renovables en Colombia, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Vargas, J.A., 2017. Perspectiva mundial de las energías renovables. Encuentro Int. Energ. Renov. 29– 30. Vergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., Benoit, P., 2013. Wind Energy in Colombia: A Framework for Market Entry. World Bank Publications. Verhees, B., Raven, R., Kern, F., Smith, A., 2015. The role of policy in shielding, nurturing and enabling offshore wind in The Netherlands (1973-2013). Renew. Sustain. Energy Rev. 47, 816–829. Vidadili, N., Suleymanov, E., Bulut, C., Mahmudlu, C., 2017. Transition to renewable energy and sustainable energy development in Azerbaijan. Renew. Sustain. Energy Rev. 80, 1153–1161. VLIZ, 2015. Mermaid project [WWW Document]. Innov. Multi-Purp. Offshore Platf. Planing Des. Oper. URL (accessed 3.15.18). Weaver, T., 2012. Financial appraisal of operational offshore wind energy projects. Renew. Sustain. Energy Rev. 16, 5110–5120. White, F.M., 2002. Fluid Mechanics-5th. McGraw-HillNew York. 8719.2009.00016.x.Mechanobiology Wind Europe, 2018. Wind in power 2017, Annual combined onshore and offshore wind energy statistics. Wind Europe. WISE, 2012. Action plan for comprehensive renewable energy development in Tamil Nadu. WISE, World Institute of Sustainable Energy, Pune, India. World Energy Council, 2016. World Energy Trilemma Index 2016, World Energy Council. ed. World Energy Council, London, United Kingdom. World Energy Council, 2014. Colombia avanza 8 puestos en el ranking global del Consejo Mundial de Energía [WWW Document]. URL (accessed 3.15.18). Yuan, X., Zuo, J., Huisingh, D., 2015. Social acceptance of wind power : a case study of Shandong Province ,. J. Clean. Prod. 92, 168–178. Zhang, D., Wang, J., Lin, Y., Si, Y., Huang, C., Yang, J., Huang, B., Li, W., 2017. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 76, 865–871. Zhang, J., Zhang, Jiwei, Cai, L., Ma, L., 2017. Energy performance of wind power in China: A comparison among inland, coastal and offshore wind farms. J. Clean. Prod. 143, 836–842. Zuluaga, M.M., Dyner, I., 2007. Incentives for renewable energy in reformed Latin-American electricity markets: the Colombian case. J. Clean. Prod. 15, 153–162.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal