Show simple item record

dc.creatorMorcillo, M.
dc.creatorDíaz, I.
dc.creatorCano, H.
dc.creatorChico, B.
dc.creatorde la Fuente, D.
dc.date.accessioned2019-07-11T13:59:04Z
dc.date.available2019-07-11T13:59:04Z
dc.date.issued2019-06-19
dc.identifier.urihttp://hdl.handle.net/11323/4939
dc.description.abstractThe atmospheric corrosion of weathering steel (WS) has been extensively discussed in the scientific literature, but a comprehensive overview of this topic from an engineering viewpoint is currently lacking. The present publication seeks to fill this gap, providing engineers, designers and steel manufacturers with an insight into the current state of knowledge on this important structural material and presenting key research findings in a way that promotes their practical application. The Part II of this review sets out the methods available to evaluate the protective ability of rust layers and describes testing, inspection and maintenance techniques. The paper ends with a number of examples of corrosion problems in WS structures, an overview of new advanced WS, and considers the painting of WS in highly corrosive atmospheres.spa
dc.language.isoengspa
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectWeathering steelspa
dc.subjectAtmospheric corrosionspa
dc.subjectEngineeringspa
dc.titleAtmospheric corrosion of weathering steels. Overview for engineers.Part II: Testing, inspection, maintenancespa
dc.typeArticlespa
dcterms.references[1] M. Yamashita, T. Misawa, Recent progress in the study of protective rust-layer formation on weathering steel, Proceedings Corrosion’ 98, San Diego, 1998. Technical Publication 357. [2] J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review, Materials 10 (2017) 406. [3] T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments, Corros. Sci. 48 (2006) 2799–2812. [4] S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge, Corros. Sci. 49 (2007) 1131–1142. [5] P. Dillmann, F. Mazaudier, S. Hoerlé, Advances in understanding atmospheric corrosion of iron. I. Rust characterization of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corros. Sci. 46 (2004) 1401–1429. [6] M. Pourbaix, Une méthode électrochimique rapide de prédétermination de la corrosion atmosphérique, Rapports Techniques CEBELCOR Vol. 109, RT 160 (August 1969). [7] M. Pourbaix, J. Van Muylder, A. Pourbaix, J. Kissel, An electrochemical wet and dry method for atmospheric corrosion testing, in: W.H. Aylor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, p. 167. [8] M. Pourbaix, J. Van Muylder, A. Pourbaix, J. Kissel, Applications of an electrochemical wet and dry method for atmospheric corrosion testing, Rapports Techniques CEBELCOR Vol. 139, RT 259 (Oct. 1980). [9] K. Kashima, S. Hara, H. Kishikawa, H. Miyuki, Evaluation of protective ability of rust layers on weathering steels by potential measurement, Corros. Eng. 49 (2000) 25–37. [10] T. Murata, Weathering steel, in: R.W. Revie (Ed.), Uhlig’s Corrosion Handbook, J. Wiley & Sons, New York, 2000, pp. 569–580. [11] N. Damgaard, S. Walbridge, C. Hansson, J. Yeung, Corrosion protection and assessment of weathering steel highway structures, J. Constr. Steel Res. 66 (2010) 1174–1185. [12] H. Kihira, S. Ito, T. Murata, Quantitative classification of patina conditions for weathering steel using a recently developed instrument, Corrosion 45 (1989) 347–352. [13] S. Ito, H. Kihira, T. Murata, A new method to monitor in-situ protective properties of rust on weathering steel, in: S.W. Dean, T.S. Lee (Eds.), Degradation of Metals in the Atmosphere, ASTM STP 965, American Society for Testing and Materials, Philadelphia, 1988, pp. 366–373. [14] ISO 8407, Corrosion of Metals and Alloys - Removal of Corrosion Products from Corrosion Test Specimens, International Organization for Standardization, Genève, 1991. [15] ASTM G50, Conducting atmospheric corrosion tests on metals, American Society for Testing and Materials, Philadelphia, 1991. [16] Corrosion, in: L.L. Shreir, R.A. Jarman, and G.T. Burstein (Ed), Corrosion Control, third ed., Butterworth-Heinemann, Oxford, 1994, pp. 19:53–19:57. [17] K.A. Chandler, M.B. Kilcullen, Corrosion resistant low-alloy steels: a review with particular reference to atmospheric conditions in the United Kingdom, Br. Corros. J. 5 (1970) 24–32. [18] A.F. Bromley, M.B. Kilkullen, J.F. Stanners. in: 5th European Congress of Corrosion, Paris, France, 1973. [19] R.A. Legault, S. Mori, H.P. Leckie, An electrochemical-statistical study of the effect of the chemical environment on the corrosion behavior of mild steel, Corrosion 26 (1970) 121–128. [20] A.W. Hassel, S. Bonk, S. Tsuri, M. Stratmann, A universal alternating immersion simulator for accelerated cyclic corrosion tests, Mater. Corros. 59 (2008) 175– 180. [21] J. Wang, Z.Y. Wang, W. Ke, Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry conditions, Mater. Chem. Phys. 124 (2010) 952–958. [22] E. Johansson, J. Gullman, Corrosion study of carbon steels and zinc. Comparison between field exposure and accelerated tests, in: W.W. Kirk, H. H. Lawson (Eds.), Atmospheric Corrosion, ASTM STP 1239, American Society for Testing and Materials, Philadelphia, 1995, pp. 240–256. [23] F.L. LaQue. Corrosion testing, in: Proceedings ASTM, 1951, pp. 495-582. [24] ASTM B117-11, Standard practice for operating salt spray (fog) apparatus, American Society for Testing and Materials, Philadelphia, 2011. [25] G. Haynes III, Types of tests: cabinet, in: R. Baboian (Ed.), Corrosion Tests and Standards. Application and Interpretation, American Society for Testing and Materials, Philadelphia, 1995, pp. 91–97. [26] F.H. Haynie, J.W. Spence, J.B. Upham, Effects of air pollutants on weathering steel and galvanized steel: a chamber study, in: S.K. Coburn (Ed.), Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646, American Society for Testing and Materials, Philadelphia, 1978, pp. 30–47. [27] ISO 3231, Paints and varnishes – Determination of Resistance to Humid Atmospheres Containing Sulphur Dioxide, International Organization for Standardization, Genève, 1993. [28] ISO 6988, Metallic and Other Non Organic Coatings – Sulphur Dioxide Test with General Condensation of Moisture, International Organization for Standardization, Genève, 1985. [29] J.A. González, Control de la Corrosión. Estudio y Medida por Técnicas Electroquímicas, CSIC, Madrid, 1989. [30] P. Montoya, I. Díaz, N. Granizo, D. De la Fuente, M. Morcillo, A study on accelerated corrosion testing of weathering steel, Mater. Chem. Phys. 142 (2013) 220–228. [31] V. Kucera, P.E. Augustsson, D. Knotkova, L. Rozlivka, Experience with the use of weathering steels in constructions in Sweden and the Czech Republic, International Workshop on Atmospheric Corrosion and Weathering Steels, Corrosion and Protection group of University of Antioquia, Cartagena de Indias, Colombia, 2004. [32] D. Knotkova, J. Steinbauer, A. Kopilikova, Crevice corrosion in bolted lap joints made of weathering steels, International Workshop on Atmospheric Corrosion and Weathering Steels, Corrosion and Protection group of University of Antioquia, Cartagena de Indias, Colombia, 2004. [33] EN ISO 9223, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation, European Committee for Standardization, Brussels, 2012. [34] D. Knotkova, J. Vlckova, Atmospheric corrosion of bolted lap joints made of weathering steels, in: W.W. Kirk, H.H. Lawson (Eds.), Atmospheric Corrosion, ASTM STP 1239, American Society for Testing and Materials, Philadelphia, 1995, pp. 114–136. [35] M.L. Hoitomt, Performance of weathering steel tubular structures, in: H.E. Townsend (Ed.), Outdoor Atmospheric Corrosion, American Society for Testing and Materials315, Philadelphia, 2002, p. 301. [36] A. Raman, Atmospheric corrosion problems with weathering steels in Lousiana bridges, in: S.W. Dean, T.S. Lee (Eds.), Degradation of Metals in the Atmosphere, ASTM STP 965, American Society for Testing and Materials, Philadelphia, 1988, pp. 16–29. [37] D.C. Cook, The corrosion of high performance steel in adverse environments, in: ISIAME, Madrid, 2004, pp. 63–72. [38] J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. De la Fuente, M. Morcillo, Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres, Corros, Eng. Sci. Technol. 52 (2017) 178–187. [39] B. Chico, J. Alcántara, E. Pino, I. Díaz, J. Simancas, A. Torres-Pardo, D. De la Fuente, J.A. Jiménez, J.F. Marco, J.M. González-Calbet, M. Morcillo, Rust exfoliation on carbon steels in chloride-rich atmospheres, Corros. Rev. 33 (2015) 263–282. [40] M. Morcillo, J. Alcántara, I. Díaz, B. Chico, J. Simancas, D. De la Fuente, Marine atmospheric corrosion of carbon steels, Rev. Metal. Madrid 51 (2015) e045. [41] M. Morcillo, B. Chico, D. De la Fuente, J. Alcántara, I. Odnevall Wallinder, C. Leygraf, On the mechanism of rust exfoliation in marine environments, J. Electrochem. Soc. 164 (2017) C8–C16. [42] J. Alcántara, B. Chico, I. Díaz, D. de la Fuente, M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci. 97 (2015) 74–88. [43] S. Feliu, M. Morcillo, Corrosión y Protección de los Metales en la Atmósfera, Bellaterra, Barcelona, 1982. [44] E. Angelini, S. Grassini, M. Parvis, F. Zucchi, An in situ investigation of the corrosion behaviour of a weathering steel work of art, Surf. Interface. Anal. ECASIA 2011 special issue (2011). [45] E. Yamaguchi, Assessment method for atmospheric corrosiveness and durability design of weathering steel bridges, in: Proceedings of the 23rd US-Japan Bridge Engineering Workshop, Public Work Research Institute, Tsukuba, Japan, 2007, pp. 386–394. [46] E. Yamaguchi, S. Nakamura, K. Hirokado, C. Morita, Y. Sonoda, T. Aso, H. Watanabe, K. Yamaguchi, K. Iwatsubo, Performance of weathering steel in bridges in Kyushu-Yamaguchi region, Doboku Gakkai Ronbunshuu A, JSCE 62 (2006) 243–254. [47] Potentials and new technologies of weathering steel bridges, JSSC Technical Report No 73, 2006. [48] Japan Iron and Steel Federation (JISF) and Japan Association of Steel Bridge Construction (JASBC): Application of weathering steels to bridges, Japan Iron and Steel Federation (JISF), Tokyo, 2002. [49] H. Kihira, Systematic approaches toward minimum maintenance risk management methods for weathering steel infrastructures, Corros. Sci. 49 (2007) 112–119. [50] H. Kihira, T. Senuma, M. Tanaka, K. Nishioka, Y. Fujii, Y. Sakata, A corrosion prediction method for weathering steels, Corros. Sci. 47 (2005) 2377–2390. [51] Y. Fujii, H. Kihira, M. Tanaka, K. Matsuoka, Corrosion risk management methods to realize long-term durability of weathering steel bridges, Nippon Steel Technical Report No. 97, 2008. [52] H. Kihira, H. Yasunami, T. Kusunoki, Y. Harada, M. Tanaka, H. Takezawa, K. Matsuoka, K. Tanabe, 3% Ni-advanced weathering steel and its applicability assessing method, Nippon Steel Technical Report No. 90, 2004. [53] M. Yamashita, H. Uchida, Recent research and development in solving atmospheric corrosion problems of steel industries in Japan, Hyperfine Interact. 139 (140) (2002) 153–166. [54] M. Morcillo, I. Díaz, B. Chico, H. Cano, D. de la Fuente, Weathering steels: from empirical development to scientific design. A review, Corros. Sci. 83 (2014) 6–31. [55] H.R. Copson, Long-time atmospheric corrosion tests on low-alloy steels, Proc. ASTM 60 (1960) 1–16. [56] C.P. Larrabee, S.K. Coburn, The atmospheric corrosion of steels as influenced by changes in chemical composition, in: Proceedings of the 1st International Congress on Metallic Corrosion, London, 1961, pp. 279–285. [57] Q. Zhang, J. Wu, W. Zheng, J. Wang, J. Chen, X. Yang, A. Li, Characterization of rust layer formed on low alloy steel exposed in marine atmosphere, J. Mater. Sci. Technol. 18 (2002) 455–458. [58] Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, A.B. Li, Corrosion behavior of weathering steel in marine atmosphere, Mater. Chem. Phys. 77 (2002) 603– 608. [59] Nippon Steel Corporation, Coastal Weathering Steel (AC 330), 2006. [60] H. Kihira, S. Ito, S. Mizoguchi, T. Murata, A. Usami, K. Tanabe, Creation of alloy design concept for anti air-born salinity weathering steel, Zairyo- to -Kankyo 49 (2000) 30–40. [61] A. Usami, T. Kusunoki, H. Kihira, 3%-Ni weathering steel plate for uncoated bridges at high airborne salt environment, Nippon Steel Technical Report No. 87, 2003. [62] M. Kimura, H. Kihira, M. Nomura, Y. Kitajima, Corrosion protection mechanism of the advanced weathering steel (Fe-3.0Ni-0.40Cu, mass%) in a coastal area, in: D.A. Shifler (Ed.), Corrosion in Marine and Saltwater Environments II-Proc. of the International Symposium, Electrochemical Society, Pennington, NJ, 2005, pp. 133–142. [63] M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Control of Fe (O, OH)6 nano-network structures of rust for high atmospheric-corrosion resistance, Corros. Sci. 47 (2005) 2499–2509. [64] M. Kimura, T. Mizoguchi, H. Kihira, M. Kaneko, Various scale analyses to create functioning corrosion products, in: Y. Waseda, S. Suzuki (Eds.), Characterization of Corrosion Products on Steel Surfaces, Advances in Materials Research, Springer, Heildelberg, 2006, pp. 245–272. [65] H. Cano, I. Díaz, D. de la Fuente, B. Chico, M. Morcillo, Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities, Mater. Corros. 69 (2018) 8–19. [66] I. Sugimoto, K. Kita, Evaluation of applicability for Ni-advanced weathering steels and bridge high-performance steels to railway steel bridges, QR of RTRI 51 (2010) 33–37. [67] M. Morcillo, B. Chico, I. Díaz, H. Cano, D. De la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci. 77 (2013) 6–24. [68] Weathering steel in Bridgework, British Steel Corporation, Technical Brochure, 1970. [69] M. Arponen, O. Forsén, Formation and properties of the protective oxide layer on weathering steels, Proceedings of the 14th International Corrosion Congress, 1999. [70] F.W. Fink, F.H. Buttner, W.K. Boyd, Technical-economic evaluation of airpollution corrosion costs on metals in the U.S., Battelle Memorial Institute, Columbus, 1971. [71] R.R. Bishop, Economic and technological trends in protection methods, Construct. Steelwork Metals Mater. 30–33 (1971). [72] P. Hans, The Behavior of Paints on Cor-Ten Steel, U.S. Steel Corp., 1970. [73] H.R. Copson, C.P. Larrabee, Extra durability of paint on low-alloy steels, ASTM Bulletin (1959) 68. [74] J.H. Wang, F.I. Wei, H.C. Shih, Assessing performance of painted carbon and weathering steels in an industrial atmosphere, Corrosion 53 (1997) 206–215. [75] P. Decker, S. Brüggerhoff, G. Eggert, To coat or not to coat? The maintenance of Cor-Ten sculptures, Mater. Corros. 59 (2008) 239–247. [76] D.C. Cook, M. Yamashita, High performance steels: properties, production, bridges and corrosion characteristics, International Workshop on Atmospheric Corrosion and Weathering Steels, Corrosion and Protection group of University of Antioquia, Cartagena de Indias, Colombia, 2004. [77] H. Nagano, M. Yamashita. Formation of corrosion protective rust on steel exposed to the atmosphere. Available from: http://zkk.co.jp/reppdf/naga1108. pdf. [78] Waterborne rust stabilizing surface treatment for weathering steel ‘‘Cupten Coat Aqua” TM, JFE Technical Report No. 11, 2008. [79] Early rust-stabilizing type surface treatment ‘‘e-RUS” TM, JFE Steel Corporation.spa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal