Show simple item record

dc.creatorP. Rebolledo, Liceth
dc.creatorA. Arana, Victoria
dc.creatorTrilleras, Jorge
dc.creatorE. Barros, Gustavo
dc.creatorGonzález-Solano, Arturo J.
dc.creatorMaury-Ardila, Henry
dc.date.accessioned2019-07-11T16:14:52Z
dc.date.available2019-07-11T16:14:52Z
dc.date.issued2019-04-18
dc.identifier.issn2073-4441
dc.identifier.urihttp://hdl.handle.net/11323/4944
dc.description.abstractThe combined coagulation-solar photo Fenton treatment of leachate from the sanitary landfill located in Atlantico-Colombia was investigated. Firstly, the efficiency of two alternative combined treatments for the reduction of chemical oxygen demand in leachate was assessed, coagulation with poly-aluminum chloride followed by solar photo-Fenton process (Treatment 1) and coagulation with FeCl3·6H2O followed by ferrioxalate-induced solar photo-Fenton process (Treatment 2). Afterwards, treatments 1 and 2 were compared with the treatment currently used in the sanitary landfill (only coagulation with poly-aluminum chloride), in terms of efficiency and costs. An optimization study of alternative treatments was performed combining central-composite experimental design and response surface methodology. The optimum conditions resulted in a chemical oxygen demand reduction of 73 % and 80 % for Treatment 1 and 2, respectively. Both alternative treatments for the leachate are more efficient than the treatment currently used in the sanitary landfill (chemical oxygen demand reduction of 20 %). In terms of costs, treatment 1 would be the most competitive to implement in the sanitary landfill, since this would have an increase of 13.3 % in the total unitary cost compared to an increase of 39.5 % of treatment 2.spa
dc.language.isoengspa
dc.publisherWaterspa
dc.relation.ispartofhttps://doi.org/10.3390/w11071351spa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectleachatesspa
dc.subjectcoagulationspa
dc.subjectsolar photo-fentonspa
dc.subjectferrioxalate-inducedspa
dc.titleEfficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachatespa
dc.typeArticlespa
dcterms.references1. Zhang, H.; Wu, X.; Li, X. Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem. Eng. J. 2012, 210, 188–194. [CrossRef] 2. Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [CrossRef] [PubMed] 3. Boumechhour, F.; Rabah, K.; Lamine, C.; Said, B.M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water Environ. J. 2013, 27, 114–119. [CrossRef] 4. Risch, E.; Loubet, P.; Núñez, M.; Roux, P. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Res. 2014, 57, 20–30. [CrossRef] [PubMed] 5. Moradi, M.; Ghanbari, F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton processes: Biodegradability improvement. J. Water Process. Eng. 2014, 4, 67–73. [CrossRef] 6. Kumar, S.; Narsi, B. Coagulation of landfill leachate by FeCl3 : Process optimization using Box-Behnken design (RMS). Appl. Water Sci. 2015, 7, 1943–1953. [CrossRef] 7. Klauson, D.; Kivi, A.; Kattel, E.; Klein, K.; Viisimaa, M.; Bolobajev, J.; Velling, S.; Gol, A.; Tenno, T.; Trapido, M. Combined processes for wastewater purification: Treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J. Chem. Biotechnol. 2015, 90, 1527–1536. [CrossRef] 8. Huang, J.; Chen, J.; Xie, Z.; Xu, X. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide. J. Environ. Technol. 2015, 36, 1001–1007. [CrossRef] 9. Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.M.; Demeestere, K.; Van Hulle, S.W.H. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to actived carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [CrossRef] 10. Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 2017, 574, 1599–1610. [CrossRef] 11. Silva, T.F.C.V.; Soares, P.A.; Manenti, D.R.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Vilar, V.J.P. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Sci. Total Environ. 2017, 576, 99–117. [CrossRef] [PubMed] 12. Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/ flocculation combined with microelectrolysis-Fenton processes. Environ. Technol. 2018, 7, 1–9. [CrossRef] [PubMed] 13. Liu, X.; Li, X.-M.; Yang, Q.; Yue, X.; Shen, T.T.; Zheng, W.; Luo, K.; Sun, Y.-H.; Zeng, G.-M. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chem. Eng. J. 2012, 200–202, 39–51. [CrossRef] 14. Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205–206, 208–215. [CrossRef] [PubMed] 15. Pereira, J.H.O.S.; Queirós, D.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Boaventura, R.A.R.; Vilar, V.J.P. Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: Application to oxytetracycline degradation. Chem. Eng. J. 2014, 253, 217–228. [CrossRef] 16. Castilla-Caballero, D.; Machuca-Martínez, F.; Bustillo-Lecompte, C.; Colina-Márquez, J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling and Scaling-Up of Photoreactors. Catalysts 2018, 8, 179. [CrossRef] 17. Standard Methods for Examination of Water and Wastewater, 21st ed.; APHA AWWA WEF: Washington, DC, USA, 2005; pp. 5–2 and 5–19. 18. U.S. EPA. Method 3015 A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Revision 1; U.S. Government Printing Office: Washington, DC, USA, 2007 19. Montgomery, D.C. Desing and Analysis of Experiments, 8th ed.; John Wiley and Sons: New York, NY, USA, 2012; pp. 478–544. 20. Statgraphics Centurion XVI User’s Guide; Statpoint Technologies Inc.: Warrenton, VA, USA, 2009; pp. 257–279. 21. Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar-Fenton process. J. Hazard. Mater. 2015, 286, 261–268. [CrossRef] 22. Pereira, J.H.O.S.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Vilar, V.J.P.; Boaventura, R.A.R. Assessment of solar driven TiO2 -assisted photocatalysis efficiency on amoxicillin degradation. Environ. Sci. Pollut. Res. 2013, 21, 1292–1303. [CrossRef] 23. Wang, Z.P.; Zhang, Z.; Lin, Y.J.; Deng, N.S.; Tao, T.; Zhuo, K. Landfill leachate treatment by coagulation-photooxidation process. J. Hazard. Mater. 2002, 95, 153–159. [CrossRef] 24. Monteagudo, J.M.; Durán, A.; Culebradas, R.; San Martín, I.; Carnicer, A. Optimization of pharmaceutical wastewaster treatment by solar/ferrioxalate photo-catalysis. J. Environ. Manag. 2013, 128, 210–219. [CrossRef] 25. Estrada-Arriaga, E.B.; Zepeda-Aviles, J.A.; García-Sánchez, L. Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step. Chem. Eng. J. 2016, 285, 508–516. [CrossRef] 26. Huo, S.; Xi, B.; Yu, H.; He, L.; Fan, S.; Liu, H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20, 492–498. [CrossRef] 27. GilPavas, E.; Dobrosz-Gomez, I.; Gomez-García, M.A. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [CrossRef] [PubMed] 28. Tatsi, A.A.; Zouboulis, A.I.; Matis, K.A.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [CrossRef] 29. Wang, Z.P.; Shui, Y.; He, M.; Liu, P. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms. Biochem. Eng. J. 2017, 121, 107–117. [CrossRef] 30. Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 2017, 167, 512–519. [CrossRef] 31. Li, W.; Zhou, Q.; Hua, T. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. Int. J. Chem. Eng. 2010, 2010, 1–10. [CrossRef] 32. Ministry of Environment and Sustainable Development. Resolution 0631/2015. Available online: http://corponor. gov.co/corponor/RESOLUCION%20MINAMBIENTE%20NACIONAL%20631%20DE%202015.pdf (accessed on 5 April 2019). 33. Amiri, A.; Mohammad, R.S. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment. Waste Manag. 2014, 32, 2528–2536. [CrossRef] 34. Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [CrossRef] 35. Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [CrossRef] 36. Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Appl. Catal. B 2016, 198, 431–446. [CrossRef] 37. Kim, S.; Geissen, S.; Vogelpohl, A. Landfill leachate treatment by a photoassisted fenton reaction. Water Sci. Technol. 1997, 35, 239–248. [CrossRef] 38. Sarria, V.; Deront, M.; Péringer, P.; Pulgarin, C. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron (III) photoassisted-biological treatment. Appl. Catal. B Environ. 2003, 40, 231–246. [CrossRef] 39. Monteagudo, J.M.; Durán, A.; Corral, J.M.; Carnicer, A.; Frades, J.M.; Alonso, M.A. Ferrioxalate-induced solar photo-Fenton system for treatment of winery wastewaters. Chem. Eng. J. 2012, 181–182, 281–288. [CrossRef] 40. Seibert, D.; Diel, T.; Welter, J.B.; de Souza, A.L.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Borda, F.H. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate. J. Environ. Chem. Eng. 2017, 5, 4462–4470. [CrossRef] 41. Expósito, A.J.; Monteagudo, J.M.; Durán, A.; Martín, I.S.; González, L. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. J. Hazard. Mater. 2018, 342, 597–605. [CrossRef] [PubMed] 42. Miralles-Cuevas, S.; Daraowna, D.; Wanag, A.; Molzia, S.; Malato, S.; Oller, I. Comparison of UV/H2O2 , UV/S2O8 2−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O8 2- at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chem. Eng. J. 2017, 310, 514–524. [CrossRef]spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal