Mostrar el registro sencillo del ítem

dc.contributor.authorBORRERO-SALAZAR, Alex A.spa
dc.contributor.authorCARDENAS-CABRERA, Jorge M.spa
dc.contributor.authorBARROS-GUTIERREZ, Daniel A.spa
dc.contributor.authorJIMÉNEZ-CABAS, Javier A.spa
dc.date.accessioned2019-07-12T20:23:36Z
dc.date.available2019-07-12T20:23:36Z
dc.date.issued2019-07
dc.identifier.issn0798-1015spa
dc.identifier.urihttp://hdl.handle.net/11323/5002spa
dc.description.abstractModel Predictive Control (MPC) is a useful tool when controlling processes that handle a large number of input and output variables. This study presents a comparison of different MPC strategies when they are subjected to control process variables directly. The strategies studied are IMC, GPC, MPC-D, MPC-DR, and DMC. Evaluation of the performance of the controlled loop was performed with the filtering and correlation analysis algorithm (FCOR). The methodology proposed is validated in a Continuous Stirred-Tank Reactor (CSTR) case study. Discrete predictive control demonstrated the best results in this study.spa
dc.description.abstractEl Control predictivo de modelos (MPC) es una herramienta útil para controlar procesos que manejan un gran número de variables de entrada y salida. Este estudio presenta una comparación de diferentes estrategias de MPC cuando son usadas para controlar directamente variables de proceso. Las estrategias estudiadas son IMC, GPC, MPC-D, MPC-DR y DMC. La evaluación del desempeño del lazo de control se realizó con el algoritmo de análisis de filtrado y correlación (FCOR). La metodología propuesta se valida en un caso de estudio tipo CSTR. El control predictivo discreto demostró los mejores resultados en este estudio.spa
dc.language.isoeng
dc.publisherEspaciosspa
dc.relation.ispartofhttp://www.revistaespacios.com/a19v40n20/19402012.htmlspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectMPC designspa
dc.subjectMinimum variance controlspa
dc.subjectFCORspa
dc.subjectCSTRspa
dc.subjectDiseño MPCspa
dc.subjectControl de Mínima Varianzaspa
dc.titleA comparison study of MPC strategies based on minimum variance control index performancespa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesBauer, M., Horch, A., Xie, L., Jelali, M., & Thornhill, N. (2016). The current state of control loop performance monitoring--A survey of application in industry. Journal of Process Control, 38, 1–10. Bosgra, O. (2007). Multivariable Feedback Control-Analysis and Design (Skogestad, S. and Postlewaite, I.; 2005)[book review]. IEEE Control Systems, 27(1), 80–81. Brice, A. (2008). A guide to major chemical disasters worldwide. Camacho, E. F., & Bordons, C. (2007). Nonlinear model predictive control: An introductory review. In Assessment and future directions of nonlinear model predictive control (pp. 1– 16). Springer. CANO, S., BOTERO, L., & RIVERA, L. (2017). Evaluación del desempeño de Lean Construction. Revista ESPACIOS| Vol. 38 (No39) Año 2017, 38(39). Clarke, D. W., Mohtadi, C., & Tuffs, P. S. (1987). Generalized Predictive Control&Mdash;Part I. The Basic Algorithm. Automatica, 23(2), 137–148. https://doi.org/10.1016/0005- 1098(87)90087-2 dos SANTOS, F. F. P., & others. (2016). Tecnologia destinada a produção de biodiesel utilizando uma plataforma de baixo custo e multifuncionalidade: Reator multifuncional destinado a produção de biodiesel. Revista ESPACIOS| Vol. 37 (No22) Año 2016. Duarte, J., Garcia, J., Jiménez, J., Sanjuan, M. E., Bula, A., & González, J. (2017). Autoignition control in spark-ignition engines using internal model control structure. Journal of Energy Resources Technology, 139(2), 22201. Garcia, C. E., & Morari, M. (1982). Internal model control. A unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development, 21(2), 308– 323. Harris, T. J., Seppala, C. T., & Desborough, L. D. (1999). A review of performance monitoring and assessment techniques for univariate and multivariate control systems. Journal of Process Control, 9(1), 1–17. Huang, B. (1998). Multivariate statistical methods for control loop performance assessment. University of Alberta Alberta, Edmonton, Canada. Huang, B., & Kadali, R. (2008). Dynamic modeling, predictive control and performance monitoring: a data-driven subspace approach. Springer. Jelali, M. (2012). Control performance management in industrial automation: assessment, diagnosis and improvement of control loop performance. Springer Science & Business Media. JORDÃO, R. V. D., Neto, J. A. S., & others. (2016). Estratégia e desenho do sistema de controle gerencial. Revista ESPACIOS| Vol. 37 (No04) Año 2016. Lindström, J., Kyösti, P., & Delsing, J. (2018). European roadmap for industrial process automation. Mauricio Johnny, L., & RODRIGUEZ, C. M. T. (2015). Mapeamento do Estado da Arte do tema Avaliação de Desempenho direcionado para a Logística Lean. Revista ESPACIOS| Vol. 36 (No14) Año 2015. Rawlings, J. B. (2000). Tutorial overview of model predictive control. IEEE Control Systems Magazine, 20(3), 38–52. https://doi.org/10.1109/37.845037 Rivera, J. R., Alzate, C. E. O., & Arias, J. A. T. (2015). Estudio preliminar de vigilancia tecnológica de emulsificantes usados en chocolatería. Espacios, 36(13). Sanjuan, M., Kandel, A., & Smith, C. A. (2006). Design and implementation of a fuzzy supervisor for on-line compensation of nonlinearities: An instability avoidance module. Engineering Applications of Artificial Intelligence, 19(3), 323–333. https://doi.org/10.1016/j.engappai.2005.09.003 Smith, C. A., & Corripio, A. B. (1985). Principles and practice of automatic process control (Vol. 2). Wiley New York. Wang, L. (2009). Model predictive control system design and implementation using MATLAB. Springer Science & Business Media. Zio, E., & Aven, T. (2013). Industrial disasters: Extreme events, extremely rare. Some reflections on the treatment of uncertainties in the assessment of the associated risks. Process Safety and Environmental Protection, 91(1), 31–45. https://doi.org/https://doi.org/10.1016/j.psep.2012.01.004spa
dc.title.translatedComparación de estrategias MPC basado en índice de mínima varianzaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal