Show simple item record

dc.creatorEscobar Yonoff, Rony
dc.creatorValencia Ochoa, Guillermo
dc.creatorCardenas-Escorcia, Yulineth
dc.creatorSilva-Ortega, Jorge Ivan
dc.creatorMeriño-Stand, Lourdes
dc.description.abstractA bibliometric analysis of proton exchange membrane fuel cells (PEMFCs) content from a total of 15.020 research publications was conducted between 2008 and 2018, the papers being detailed in the online version of SCIExpanded, Thomson Reuters Web of Science. Data processing tools such as Hitscite, CiteSpace, ArcGIS and Ucinet 6 were used to process the information. The parameters analyzed in the analysis were: type of document; the language of publication; volume and characteristics of publication output; publication by journals; performance of countries and research institutions; research trends and visibility. The study showed that "Fuel'', "Cell", "Membrane “and "Proton" were found in most of the titles of the documents, while "Performance", "Pemfc”, "Pem Fuel Cell" and "Fuel Cell" were the keywords most commonly used in documents. The analysis found that PEMFC studies have tended to be growing and that leading peer-reviewed journals have produced numerous publications on the subject. The investigation revealed that the country with the most significant production in the field is USA with a contribution of 3009; 20% of the total publications. Followed by China 2480; 16.5%, South Korea 1273; 8.5% and Germany 1121; 7.5%, showing to the main world powers as the most significant contributors to the
dc.rightsCC0 1.0 Universal*
dc.titleResearch trends in proton exchange membrane fuel cells during 2008–2018: A bibliometric analysisspa
dcterms.references[1] S. Shimpalee, V. Lilavivat, J.W. Van Zee, H. McCrabb, A. Lozano-Morales, Understanding the effect of channel tolerances on performance of PEMFCs, Int. J. Hydrogen Energy 36 (2011) 12512–12523. [2] C. Mahjoubi, J. Olivier, S. Skander-mustapha, M. Machmoum, I. Slama-belkhodja, An improved thermal control of open cathode proton exchange membrane fuel cell, Int. J. Hydrogen Energy 44 (2018) 11332–11345. [3] J. Zhao, Q. Jian, L. Luo, B. Huang, S. Cao, Z. Huang, Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells, Appl. Therm. Eng. 145 (2018) 343–351. [4] T. Sutharssan, D. Montalvao, Y.K. Chen, W.-C. Wang, C. Pisac, H. Elemara, A review on prognostics and health monitoring of proton exchange membrane fuel cell, Renew. Sustain. Energy Rev. 75 (2017) 440–450. [5] J. Qi, Y. Zhai, J. St-Pierre, Effect of contaminant mixtures in air on proton exchange membrane fuel cell performance, J. Power Sources 413 (2019) 86–97. [6] S. Elakkiya, G. Arthanareeswaran, K. Venkatesh, J. Kweon, ScienceDirect Enhancement of fuel cell properties in polyethersulfone and sulfonated poly ( ether ether ketone ) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell, Int. J. Hydrogen Energy 43 (2018) 21750–21759. [7] Kraytsberg Alexander, Yair Ein-Eli, Review of Advanced Materials for Proton Exchange Membrane Fuel Cells, Energy fuel. 28 (2014). [8] H. Shao, D. Qiu, L. Peng, P. Yi, X. Lai, In-situ measurement of temperature and humidity distribution in gas channels for commercial-size proton exchange membrane fuel cells, J. Power Sources 412 (2019) 717–724. [9] A.R. Vijay Babu, P. Manoj Kumar, G. Srinivasa Rao, Parametric study of the proton exchange membrane fuel cell for investigation of enhanced performance used in fuel cell vehicles, Alexandria Eng. J. 57 (2018) 3953–3958. [10] B.H. Lim, E.H. Majlan, W.R.W. Daud, M.I. Rosli, T. Husaini, Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell, Energy 169 (2019) 338–343. [11] F. Barbir, PEM Fuel cells, second ed., 2013. [12] P. Pei, X. Jia, H. Xu, P. Li, Z. Wu, Y. Li, P. Ren, D. Chen, S. Huang, The recovery mechanism of proton exchange membrane fuel cell in micro- current operation, Appl. Energy 226 (2018) 1–9. [13] M.Liebrech, EBRD Sustainable Energy Finance Facilities, Blomb. New Energy Financ. (n.d.). [14] M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135–3191. [15] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources 375 (2018) 158–169. [16] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114 (2003) 32–53. [17] D. Cheddie, N. Munroe, Review and comparison of approaches to proton exchange membrane fuel cell modeling, J. Power Sources 147 (2005) 72–84. [18] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.S. Liu, H. Wang, J. Shen, A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation, J. Power Sources 165 (2007) 739–756. [19] H. Tawfik, Y. Hung, D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, J. Power Sources 163 (2007) 755–767. [20] W. Yan, C. Chen, Y. Jhang, Y. Chang, P. Amani, Performance evaluation of a multistage plate-type membrane humidi fi er for proton exchange membrane fuel cell, Energy Convers. Manag. 176 (2018) 123–130. [21] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources 173 (2007) 891–908. [22] S. Zhang, X. Yuan, H. Wang, W. M erida, H. Zhu, J. Shen, S. Wu, J. Zhang, A review of accelerated stress tests of MEA durability in PEM fuel cells, Int. J. Hydrogen Energy 34 (2009) 388–404. [23] X. Guo, H. Zhang, J. Zhao, F. Wang, J. Wang, H. Miao, J. Yuan, Performance evaluation of an integrated high-temperature proton exchange membrane fuel cell and absorption cycle system for power and heating/cooling cogeneration, Energy Convers. Manag. 181 (2019) 292–301. [24] I. Alaefour, S. Shahgaldi, A. Ozden, X. Li, F. Hamdullahpur, The role of flow-field layout on the conditioning of a proton exchange membrane fuel cell, Fuel 230 (2018) 98–103. [25] Y. Kajikawa, J. Yoshikawa, Y. Takeda, K. Matsushima, Tracking emerging technologies in energy research: toward a roadmap for sustainable energy, Technol. Forecast. Soc. Change 75 (2008) 771–782. [26] B. Verspagen, Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research, Adv. Complex Syst. 10 (2007) 93–115. [27] L. Caicedo, G. Valencia, Y. Cardenas, A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017, Int. J. of Energy Economics and Policy IJEEP 8 (2018) 223–229. ISSN: 2146-4553. [28] C. Chen, Science mapping: a systematic review of the literature, Journal of Data and Information Science, J. Data Inf. Sci. 2 (2017) 1–40. [29] G. Ortolano, L. Zappala, P. Mazzoleni, X-Ray Map Analyser: a new ArcGIS (R) based tool for the quantitative statistical data handling of X-ray maps (Geo- and materialscience applications), Comput. Geosci. 72 (2014). [30] Y. Li, C.M. Onasch, Y. Guo, GIS-based detection of grain boundaries, J. Struct. Geol. 30 (2008) 431–443. [31] J.A. Guimar~aes, C.R. Carlini, Most cited papers in Toxicon, Toxicon 44 (2004) 345–359. [32] Nobelprize Organization, The Nobel Prize in Chemistry 2007, 2018. [33] T. Zhongfu, Z. Chen, L. Pingkuo, B. Reed, Z. Jiayao, Focus on fuel cell systems in China, Renew. Sustain. Energy Rev. 47 (2015) 912–923. [34] Euler Hermes, Economic Outlook no. 1210, The Global Automative Market, 2014. [35] Y.S. Li, L. L., G.H. Ding, N. Feng, M.H. Wang, Ho, Global stem cell research trend: bibliometric analysis as a tool for mapping of trends from 1991 to 2006, Scientometrics 80 (1) (2009) 39–58. [36] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, J. Electrochem. Soc. 138 (1991) 2334–2342. [37] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B Environ. 56 (2005) 9–35. [38] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107 (2007) 3904–3951. [39] L. J, Fuel Cell Systems Explained, second ed., 2003. [40] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (2011) 981–1007. [41] K.A. Mauritz, R.B. Moore, State of understanding of nafion, Chem. Rev. 104 (2004) 4535–4586. [42] F. Barbir, Sustain world ser, in: F. Barbir (Ed.), PEM Fuel Cells, Academic Press, Burlington, 2005, pp. 1–16. [43] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104 (2004) 4587–4612. [44] B. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 435–452. [45] J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies, J. Power Sources 184 (2008) 104–119. [46] K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29–39. [47] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transf. 46 (2003) 4595–4611. [48] H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza, A review of water flooding issues in the proton exchange membrane fuel cell, J. Power Sources 178 (2008) 103–117. [49] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, Z.-S. Liu, S. Holdcroft, High temperature PEM fuel cells, J. Power Sources 160 (2006) 872–891. [50] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C, Chem. Mater. 15 (2003) 4896–4915. [51] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci. 34 (2009) 449–477. [52] K. Tüber, D. Pocza, C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell, J. Power Sources 124 (2003) 403–414. [53] Y. Shao, G. Yin, Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources 171 (2007) 558–566. [54] C.-Y. Wang, Fundamental models for fuel cell engineering, Chem. Rev. 104 (2004) 4727–4766. [55] E. Ojeda-Camargo, C.-B.J. Ediwn, J.I. Silva-Ortega, Solar and wind energy potential characterization to integrate sustainable projects in native communities in La guajira Colombia, Espacios 38 (2017) 1–15. [56] A. Ospino-Castro, An alisis del potencial energ etico solar en la Region Caribe para el diseno de un sistema fotovoltaico, INGECUC 6 (2010) 0 ~ –8. [57] E. Ojeda Camargo, H. Hern andez Riano, L. Bedoya Valencia, A. Barrios Sarmiento, ~ J. Candelo Becerra, Strategies applied for renewable energy source adoption in indigenous communities of La guajira, Colombia, Int. J. Eng. Technol. 8 (2016) 2689–2695. [58] E. Ojeda Camargo, J.E. Candelo, J. Silva-Ortega, Perspectives of native community in La guajira facing sustainable development and energy supply, Rev. Espac. 38 (2017)

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal