Show simple item record

dc.creatorBalbis Morejón, Milen
dc.creatorCabello Eras, Juan José
dc.creatorSagastume Gutierrez, Alexis
dc.creatorSousa Santos, Vladimir
dc.creatorPérez Gómez, Yabiel
dc.creatorRueda-Bayona, Juan Gabriel
dc.description.abstractThis study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy performance indicator was developed to assess the electricity consumption of battery formation. Given that there are several formation circuits in the formation area, an energy performance indicator was developed for each circuit. The influence of the operational practices, operational teams, workings shift starting time and technical condition of the circuits were analyzed. The influence of the operational practices and the technical conditions of the formation circuits were identified as the main factors affecting the productivity and the electricity consumption. These factors cause a time waste, affecting productivity between 2% and 5%, and increasing the electricity consumption. As a result it is recommended to improve maintenance and operational practices towards higher productivity and electricity
dc.publisherInternational Journal of Energy Economics and Policyspa
dc.rightsCC0 1.0 Universal*
dc.subjectEnergy Efficiencyspa
dc.subjectTraining Processspa
dc.subjectLead-acid Batteriesspa
dc.titleFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombiaspa
dcterms.referencesAbdelaziz, E., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Bajpai, A., Fernandes, K.J., Kumar, M. (2018), Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. Journal of Cleaner Production, 199, 296-304. Block, L., Larsen, A., Togeby, M. (2006), Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516-526. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst F. (2011), Integrating energy efficiency performance in production management e gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, 667-679. Cabello, J.J., Sagastume, A., Santos, V., Hernández, H., Balbis, M., Silva,J., Noriega, E., Vandecasteele, C. (2018), Energy Management in the Formation of Light, Starter, and Ignition Lead-acid Batteries, Energy Efficiency Magazine. Cabello, J.J., Sagastume, A., Sousa, V., Hernandez, H., Balbis, M., Silva, J. (2017), Soft Sensors to Assess the Energy Consumption in the Formation of Lead-acid Batteries. São Paulo-Brazil: 6th International Workshop Advances in Cleaner Production. p1-10. Available from: files/sessoes/5A/7/cabello_jj_et_al_academic.pdf. Cabello, J.J., Santos, V., Gutiérrez, A., Álvarez, M., Haeseldonckx, D., Vandecasteele, C. (2016), Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803-812. Cagno, E., Trianni, A. (2014), Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70-83. Chan, Y., Kantamanen, R. (2015), Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. ICF Consulting Limited. Available from: energy/sites/ener/files/documents/151201%20DG%20ENER%20 Industrial%20EE%20study%20-%20final%20report_clean_stc.pdf. Chen, H., Wei, Y., Luo, Y., Duan, S. (1996), Study and application of several-step tank formation of lead/acid battery plates. Journal of Power Sources, 59(1), 59-62. Cope, R.C., Podrazhansky, Y. (1999), The Art of Battery Charging. Battery Conference on Applications and Advances. The Fourteenth Annual. Long Beach, CA, USA. Available from: http://www.EEIexplore. Cuatrecasas, A.L. (2009), Diseño Avanzado de Procesos y Plantas de Producción Flexible: Técnicas de Diseño y Herramientas Gráficas con Soporte Informático. Profit Editorial. p718. Dahodwalla, H., Herat, S. (2000), Cleaner production options for leadacid battery manufacturing industry. Journal of Cleaner Production, 8(2), 133-142. Fawkes, S., Oung, K., Thorpe, D. (2016), Best Practices and Case Studies for Industrial Energy Efficiency Improvement. Copenhagen: Introduction for Policy Makers. Copenhagen Centre on Energy Efficiency and United Nations Environment Programme (UNEP). Available from: energyefficiencycentre/Publications/C2E2%20Publications/BestPractises-for-industriaIal-EE_web.ashx?la=da. [Last accessed on 2016 Aug 15]. Gamtessa, S., Olani, A.B. (2018), Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications. Energy Economics, 72, 650-666. Gensch, C., Baron, Y., Moch, K., (2018), World Energy Balances: Overview. Paris: Organization for Economic Cooperation and Development. Giacone, E., Mancò, S. (2012), Energy efficiency measurement in industrial processes. Energy, 38, 331-345. Gielen, D., Taylor, P. (2009), Indicators for industrial energy efficiency in India. Energy, 34(8), 962-969. Hens, L., Cabello, J.J., Sagastume, A., García, D., Cogollos, V., Vandecasteele, C. (2016), University-industry interaction on cleaner production. The case of the cleaner production center at the university of cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63-68. International Standard Organization (ISO). (2014), ISO Survey 2014. Available from: ISO. (2012), 50004: 2012-Energy Management Systems-guidance for the implementation, Maintenance and Improvement of an Energy Management System. Geneva: International Organization for Standardization. ISO. (2014), 50006: 2014-Energy Management Systems. Measuring Energy Performance using Energy Baselines (EnB) and Energy Performance Indicators (EnPI). General Principles and Guidance. Geneva: International Organization for Standardization. ISO. (2019), ISO Survey 2017. Available from: the-iso-survey.html. ITRI Ltd. (2017), Lead-acid Batteries Impact on Future Tin Use. Technical Report 2017. Jung, J., Zhang, L., Zhang, J. (2016), Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. New York: CRC Press, Taylor and Francis Group. Kiessling, R. (1992), Lead Acid Battery Formation Techniques. Digatron Firing Circuits. Available from: pdf/lead_acid.pdf. Li, Z., Luan, X., Liu, T., Jin, B., Zhang, Y. (2014), Room Cooling Load Calculation Based on Soft Sensing. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment. Berlin Heidelberg, Germany: Springer. p331-341. May, G.J., Davidson, A., Monahov, B., (2018), Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. Miloloža, I. (2013), Tendencies of development of global battery market with emphasis on republic of Croatia. Interdisciplinary Description of Complex Systems, 11, 318-333. Montalbano, P., Nenci, S. (2018), Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Economics. DOI: 10.1016/j.eneco.2018.03.033. Ospino, A. (2014), Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico. Revista Inge-CUC, 6, 95-102. Palamutcu, S. (2010), Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945-2952. Pavlov, D. (2011), Lead-acid Batteries: Science and Technology: A Handbook of Lead-acid Battery Technology and its Influence on the Product. 1st ed. Ámsterdam: Elsevier. Pavlov, D., Petkova, G., Dimitrov, M., Shiomi, M., Tsubota, M. (2000), Influence of fast charge on the life cycle of positive lead–acid battery plates. Journal of Power Sources, 87(1), 39-56. Petkova, G., Pavlov, D. (2003), Influence of charge mode on the capacity and cycle life of lead–acid battery negative plates. Journal of Power Sources, 113(2), 355-362. Pillot, C. (2015), The Rechargeable Battery Market and Main Trends 2014-2025. Avicenne Energy, 32nd International Battery Seminar and Exhibit. p69. Porter, M.E., Van der Linde, C. (1995), Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118. Poscha, A., Brudermann, T., Braschela, N., Gabriel, M. (2015), Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291-299. Rantik, M. (1999), Life Cycle Assessment of Five Batteries for Electric Vehicles under different Charging Regimes. Stockholm: KFBKommunikations Forsknings-beredningen. Report Buyer Ltd. (2015), Global and China Lead-acid Battery Industry Report, 2015-2018. Available from: product/3548160/global-and-china-lead-acid-battery-industryreport-2015-2018.html. Rudberg, M., Waldemarsson, M., Lidestam, H. (2013), Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487-496. Rydh, C.J., Sandén, B.A. (2005), Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. Sagastume, A., Cabello, J.J., Sousa, V., Hernández, H., Hens, L., Vandecasteele, C. (2018), Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443-1458. Sullivan, J.L., Gaines, L. (2010), A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10-7). USA: Argonne National Laboratory (ANL). Thi, M.N. (2009), Lead Acid Batteries in Extreme Conditions: Accelerated Charge, Maintaining the Charge with Imposed Low Current, Polarity Inversions Introducing Non-conventional Charge Methods. Doctoral Dissertation, Université Montpellier II-Sciences et Techniques du Languedoc. France. Available from: Vine, E. (2005), An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691-704. Weighall, M.J. (2003), Techniques for jar formation of valve-regulated lead–acid batteries. Journal of Power Sources, 116(1), 219-231. Weinert, N., Chiotellis, S., Seliger, G. (2011), Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60, 41-44. Wong, Y.S., Hurley W.G., Wölfle W.H. (2008), Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783-791. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C. (2018), Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106. Zhu, L., Chen, J. (2019), A dynamic approach to energy efficiency estimation in the large-scale chemical plant. Journal of Cleaner Production, 212,

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal