Show simple item record

dc.creatorHoyos, Fredy E.
dc.creatorCandelo Becerra, John Edwin
dc.creatorchavarria, hector
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.description.abstractIntroduction−Aeroponics allows the possibility to grow plants in places where conventional open-field agriculture is difficult. The use of technology improves the efficiency of the process although some energy control and irrigation system solutions must be improved.Objective−Implement an autonomous power supply and an irrigation control system for pesticide-free food pro-duction.Methodology−The autonomous system was designed using MATLAB-Simulink-MPLAB tool to perform the control model and to be applied to the crop. A dsPIC was programmed for the irrigation cycle control algorithms using MATLAB-Simulink blocks.Results−The results show that the irrigation cycle and power supply of the aeroponic system help maintain uni-formity of plant growth during the tests period, which allows a better development of the aeroponic crop.Conclusions−Cultivation by aeroponics reduces the use of pesticides, growing space, water consumption, and nu-trients consumption. Automation in irrigation and power supply systems allows good growth in coriander, which can be evidenced by increases in the weight and volume of the test plants.eng
dc.description.abstractIntroducción−La aeroponía permite la posibilidad de cultivar plantas, en lugares donde la agricultura conven-cional de campo abierto es difícil. El uso de la tecnología permite mejorar la eficiencia de los procesos, aunque se requiere incorporar algunas mejoras y soluciones en los sistemas de suministro energético y control del riego.Objetivo−Implementar una fuente autónoma de sumin-istro energético y un sistema de control del riego para la producción de alimentos libres de pesticidas.Metodología−El sistema autónomo se diseñó utilizando la herramienta Matlab-Simulink-MPLAB, para desarr-ollar el modelo de control y aplicarlo al cultivo. Además, se programó un dsPIC para los algoritmos de control del ciclo de riego utilizando bloques Matlab-Simulink. Resultados−Los resultados muestran que el ciclo de riego y el suministro de energía, ayudan a mantener plantas uniformes en el cultivo durante el periodo de las pruebas, lo que permite a su vez incorporar mejoras en el desarrollo de los cultivos aeropónicos.Conclusiones−Cultivar de manera aeropónica reduce el uso de pesticidas, espacio, agua y nutrientes. La automa-tización en los sistemas de irrigación y de suministro de potencia, permite lograr un buen crecimiento en el cilan-tro, lo cual se puede evidenciar mediante el incremento en los niveles de peso y volumen, registrados en las medi-ciones de las plantas de
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 15, Núm. 1 (2019)
dc.rightsCC0 1.0 Universal*
dc.sourceINGE CUCspa
dc.subjectAlimentos libres de pesticidasspa
dc.subjectSistemas de irrigación autónomaspa
dc.subjectProducción limpiaspa
dc.subjectFuente de potencia eléctrica autónomaspa
dc.subjectPesticide-free foodspa
dc.subjectAutonomous irrigation systemspa
dc.subjectClean productionspa
dc.subjectAutonomous electric power supplyspa
dc.titleAutomation of pesticide-free cilantro aeroponic cropsspa
dc.title.alternativeAutomatización de cultivos aeropónicos de cilantro libres de pesticidasspa
dcterms.referencesCEPAL, “Perspectivas del Comercio Internacional de América Latina y el Caribe 2018: las tensions comerciales exigen una mayor integración regional,” in Perspectivas económicas de América Latina 2018, Repensando las instituciones para el desarrollo, París, France: OECD Publishing, 2018, doi:
dcterms.referencesK. K. R. Lakkireddy, K. Kasturi and K. R. S. Sambasiva Rao, “Role of Hydroponics and Aeroponics in Soilless Culture in Commercial Food Production,” Res. Rev. J. Agric. Sci. Technol., vol. 1, no. 3, pp. 26–35, Apr. 2012. Available:
dcterms.referencesI. Y. R. Odegard and E. van der Voet, “The future of food–Scenarios and the effect on natural resource use in agriculture in 2050,” Ecol. Econ., vol. 97, pp. 51–59, Jan. 2014, doi:
dcterms.referencesJ. J. Cabello, A. Sagastume, E. López-Bastida, C. Vandecasteele, and L. Hens, “Water Footprint from Growing Potato Crops in Cuba,” Tecnol. y Ciencias del Agua, vol. 7, no. 1, pp. 107–116, Jan. 2016. Available:
dcterms.referencesM. A. García Samper, J. G. Guiliany, and J. C. Eras, “Eficiencia en el uso de los recursos y producción más limpia (RECP) para la competitividad del sector hotelero,” Rev. Gestão Soc. e Ambient., vol. 11, no. 2, p. 18, Aug. 2017, doi:
dcterms.referencesP. A. Ochoa George, J. J. C. Eras, A. S. Gutierrez, L. Hens, and C. Vandecasteele, “Residue from Sugarcane Juice Filtration (Filter Cake): Energy Use at the Sugar Factory,” Waste and Biomass Valorization, vol. 1, no. 4, pp. 407–413, Dec. 2010, doi:
dcterms.referencesW. T. Runia, “A review of possibilities for disinfection of recirculation water from soilless culture,” in Acta Hortic., vol. 382, IV International Symposium on Soil and Substrate Infestation and Disinfestation, (Leuven, Belgium), 1995, pp. 221–229, doi:
dcterms.referencesE. Ojeda Camargo, J. E. Candelo Becerra and J. I. Silva-Ortega, “Solar and wind energy potential characterization to integrate sustainable projects in native communities in La Guajira Colombia,” Espacios, vol. 38, no. 37, Aug. 2017.
dcterms.referencesA. Vides-Prado, E. Ojeda, C. Vides-Prado, I. Herrera, F. Chenlo and A. Barrios, “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renew. Sustain. Energy Rev., vol. 82, no. 3, pp. 4245–4255. Feb. 2018, doi:
dcterms.referencesE. Molina, J. E. Candelo-Becerra and E. Ojeda-Camargo,“Understanding Electricity Saving Behavior of Rural Indigenous Communities in La Guajira Department, Colombia,” J. Eng. Sci. Technol. Rev., vol. 11, no. 6, pp. 47–53, Dec. 2018, doi:
dcterms.referencesA. Hoehn, “Root Wetting Experiments aboard NASA’s KC-135 Microgravity Simulator,” BioServe Sp. Technol., 1998.
dcterms.referencesW. A. Carter, “A method of growing plants in water vapor to facilitate examination of roots,” Phytopathology, vol. 732, pp. 623–625, 1942.
dcterms.referencesR. Bisgrove, “Urban horticulture: future scenarios,” Acta Hortic., no. 881, II International Conference on Landscape and Urban Horticulture, (Bologna, Italy), 2010, pp. 33–46, doi:
dcterms.referencesMei-Yu Wu, Ya-Hui Lin and Chih-Kun Ke, “Monitoring management platform for Plant Factory,” in The 16th North-East Asia Symp. Nano, Information Technology and Reliability, (Macao, China), 2011, pp. 49–52, doi:
dcterms.referencesM. Sugano, “Elemental technologies for realizing a fullycontrolled artificial light-type plant factory,” in 2015 12th Int. Conf. & Expo on Emerging Technologies for a Smarter World (CEWIT), (Melville, NY, USA), 2015, pp. 1–5, doi:
dcterms.referencesT. Liu, A. Janku and D. Pietz, Landscape Change and Resource Utilization in East Asia: Perspectives from Environmental History. Academia Sinica on East Asia and Academia Sinica Taiwan, London, UK: Routledge, 2018, doi:
dcterms.referencesNASA Spinoff, “Progressive Plant Growing Has Business Blooming,” Environmental and Agricultural Resources, 2006.
dcterms.referencesM. Björkman, I. Klingen, A. Birch, A. Bones, T. Bruce, T. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L. Smart and D. Stewart, “Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice.,” Phytochemistry, vol. 72, no. 7, pp. 538–56, May. 2011, doi:
dcterms.referencesM. Dekker and R. Verkerk, “Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals,” Eur. J. Nutr., vol. 42, no. 1, pp. 67–72, Feb. 2003, doi:
dcterms.referencesJ. D. Hayes, M. O. Kelleher and I. M. Eggleston, “The cancer chemopreventive actions of phytochemicals derived from glucosinolates,” Eur. J. Nutr., vol. 47, no. Suppl. 2, pp. 73–88, May. 2008, doi:
dcterms.referencesS. Kumar, T. Jawaid and S. Dubey, “Therapeutic Plants of Ayurveda; A Review on Anticancer,” Pharmacogn. J., vol. 3, no. 23, pp. 01-11, Jul. 2011, doi:
dcterms.referencesM. Villatoro-Pulido et al., “In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane.,” Food Chem. Toxicol., vol. 50, no. 5, pp. 1384–92, May. 2012, doi:

Files in this item


This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal