Show simple item record


dc.creatorOrejuela Cabrera, Juan Pablo
dc.creatorFlórez González, Andrés
dc.date.accessioned2019-11-13T14:27:50Z
dc.date.available2019-11-13T14:27:50Z
dc.date.issued2019-05-05
dc.identifier.citationSánchez Cruz, M., & Morales, L. (2019). Influencia del contenido de humedad en las propiedades mecánicas de la Caña de Guadua. INGE CUC, 15(1), 99-108. https://doi.org/10.17981/ingecuc.15.1.2019.09spa
dc.identifier.issn2382-4700
dc.identifier.issn0122-6517
dc.identifier.urihttp://hdl.handle.net/11323/5635
dc.description.abstractIntroducción−En una línea de fabricación es muy impor-tante que los tiempos de ciclo de las diferentes estaciones estén balanceados y que sean bajos, ya que esto permite disminuir los inventarios de producto en proceso, sin em-bargo, hacer esto conlleva a aumentar el número de esta-ciones, lo que no es favorable ya que eleva los costos fijos asociados a las estaciones, en tal sentido es necesario definir estrategias que permitan lograr un equilibrio entre estos requerimientos.Objetivo− En este artículo se propone la formulación de un modelo para el balanceo de línea, utilizando la técnica de programación multi-objetivo por metas, aplicada a la industria farmacéutica con el fin de minimizar el número de estaciones, minimizar el tiempo de ciclo y el inventario en proceso.Metodología− Se emplea la programación por metas para abordar un modelo de balance de línea, que considera al mis-mo tiempo la asignación de múltiples estaciones una opera-ción y la asignación de múltiples operaciones a una estación. Resultados− Se logra una reducción significativa del tiem-po ciclo y del tiempo ocioso a costos mínimos, además se presenta una comparación entre el modelo determinístico y estocástico.Conclusiones−A través de esta implementación del modelo en LINGO, se validó el cumplimiento de las restricciones planteadas, la precedencia de las operaciones y el buen funcionamiento del modelo mediante las soluciones óptimas obtenidas. La simulación, es una herramienta que permite ilustrar la complejidad de las operaciones del sistema de producción, las cuales requieren como en nuestro caso de una modelación más ajustada a la realidad para compren-der el comportamiento del proceso y evaluar diferentes estrategias.spa
dc.description.abstractIntroduction−In a production Line it’s important that the stations’ cycle times are balanced and that they are low since this allows to reduce the work in process. However, doing this leads to an increase in the stations’ number, that is not favorable because it raises the costs associated with the stations, therefore it is necessary to define strategies that allow achieving a balance be-tween these requirements.Objective−In this article we propose the formulation of a model for the line balancing, using the technique of multi-objective goal programming, applied to the pharmaceutical industry in order to minimize the stations’ number, minimize cycle time and inventory in process.Methodology−Goal programming is used to address a line balance model, which considers at the same time the assignment of multiple stations to one op-eration and the assignment of multiple operations to one station.Results−A significant decrease in cycle time and idle time at minimum costs is achieved, and a comparison between the deterministic and stochastic models is presented.Conclusions−Through this implementation of the LINGO model, the compliance of the proposed restric-tions, the precedence of operations and the proper func-tioning of the model were validated through the optimal solutions obtained. The simulation is a tool that illus-trates the complexity of the operations of the production system, which require, as in our case, a more realistic modeling to understand the behavior of the process and evaluate different strategies.spa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceINGE CUCspa
dc.subjectBalanceo de líneaspa
dc.subjectTiempo de ciclospa
dc.subjectProgramación por metas;spa
dc.subjectModelo Matemáticospa
dc.subjectEnfoque Multiobjetivospa
dc.subjectLine Balancingspa
dc.subjectCycle timespa
dc.subjectGoal Programming mathematical modelspa
dc.subjectMulti Objective approachspa
dc.titleBalanceo de líneas de producción en la industria farmacéutica mediante Programación por metasspa
dc.title.alternativeProduction line balancing in the pharmaceutical industry using Goal Programmingspa
dc.typeArticlespa
dcterms.referencesN. Boysen, M. Fliedner and A. Scholl, “A classification of assembly line balancing problems,” Eur. J. Oper. Res., vol. 183, no. 2, pp. 674–693, Dec. 2007, doi: https://doi.org/10.1016/j.ejor.2006.10.010spa
dcterms.referencesJ. Pereira and E. Álvarez-Miranda, “An exact approach for the robust assembly line balancing problem,” Omega, vol. 78, pp. 85–98, Jul. 2018, doi: https://doi.org/10.1016/j.omega.2017.08.020
dcterms.referencesI. Baybars, “A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem,” Manage. Sci., vol. 32, no. 8, pp. 909–932, Aug. 1986, doi: https://doi.org/10.1287/mnsc.32.8.909
dcterms.referencesE. Erel, “A study on production lines with discrete batch WIP inventory transfer,” Int. J. Prod. Econ., vol. 55, no. 1, pp. 71–85, Jun. 1998, doi: https://doi.org/10.1016/S0925-5273(98)00042-5
dcterms.referencesE. Erel, “Effect of discrete batch WIP transfer on the efficiency of production lines,” Int. J. Prod. Res., vol. 31, no. 8, pp. 1827–1838, Aug. 1993, doi: https://doi.org/10.1080/00207549308956825
dcterms.referencesP. J. Egbelu and N. Roy, “Material flow control in AGV/ unit load based production lines,” Int. J. Prod. Res., vol. 26, no. 1, pp. 81–94, Jan. 1988, doi: https://doi.org/10.1080/00207548808947842
dcterms.referencesP. J. Egbelu, “Batch production time in a multi-stage system with material-handling consideration,” Int. J. Prod. Res., vol. 29, no. 4, pp. 695–712, Apr. 1991, doi: https://doi.org/10.1080/00207549108930096
dcterms.referencesP. J. Egbelu, “Machining and material flow system design for minimum cost production,” Int. J. Prod. Res., vol. 28, no. 2, pp. 353–368, Feb. 1990, doi: https://doi.org/10.1080/00207549008942716
dcterms.referencesR. G. Qiu, “Virtual production line based WIP control for semiconductor manufacturing systems,” Int. J. Prod. Econ., vol. 95, no. 2, pp. 165–178, Feb. 2005, doi: https://doi.org/10.1016/j.ijpe.2003.12.004
dcterms.referencesW. Choi and Y. Lee, “A dynamic part-feeding system for an automotive assembly line,” Comput. Ind. Eng., vol. 43, no. 1–2, pp. 123–134, Jul. 2002, doi: https://doi.org/10.1016/S0360-8352(02)00071-2
dcterms.referencesA. Scholl and R. Klein, “SALOME: A Bidirectional Branch-and-Bound Procedure for Assembly Line Balancing,” INFORMS J. Comput., vol. 9, no. 4, pp. 319–334, Nov. 1997, doi: https://doi.org/10.1287/ijoc.9.4.319
dcterms.referencesP. R. McMullen and P. Tarasewich, “Multi-objective assembly line balancing via a modified ant colony optimization technique,” Int. J. Prod. Res., vol. 44, no. 1, pp. 27–42, Jan. 2006, doi: https://doi.org/10.1080/00207540500216748
dcterms.referencesA. Scholl and C. Becker, “State-of-the-art exact and heuristic solution procedures for simple assembly line balancing,” Eur. J. Oper. Res., vol. 168, no. 3, pp. 666–693, Mar. 2006, doi: https://doi.org/10.1016/j.ejor.2004.07.022
dcterms.referencesY. Bukchin and T. Raviv, “Constraint programming for solving various assembly line balancing problems,” Omega, vol. 78, pp. 57–68, Jul. 2018, doi: https://doi.org/10.1016/j.omega.2017.06.008
dcterms.referencesJ. Pereira and E. Álvarez-Miranda, “An exact approach for the robust assembly line balancing problem,” Omega, vol. 78, pp. 85–98, Jul. 2018, doi: https://doi.org/10.1016/j.omega.2017.08.020
dcterms.referencesJ. R. Coronado-Hernandez and H. Ospina-Mateus, “Incorporación de Riesgos Ergonómicos en el Balanceo de Líneas de Ensamble en U,” WPOM - Work. Pap. Oper. Manag., vol. 4, no. 2, pp. 29–43, Sept. 2013, doi: http://dx.doi.org/10.4995/wpom.v4i2.1164
dcterms.referencesE. H. Bowman, “Assembly-Line Balancing by Linear Programming,” Oper. Res., vol. 8, no. 3, pp. 385–389, Jun. 1960. doi: http://dx.doi.org/10.1287/opre.8.3.385
dcterms.referencesC. N. Klahr, “Multiple Objectives in Mathematical Programming,” Oper. Res., vol. 6, no. 6, pp. 849–855, Nov. 1958. Available: https://doi.org/10.1287/opre.6.6.849
dcterms.referencesA. Charnes and W. W. Cooper, Management models and industrial applications of linear programming, vol. 1, N.J., USA: John Wiley & Sons, 1961.
dcterms.referencesY. Ijiri, Management goals and accounting for control, Haarlem, Netherlands: North Holland Pub. Co., 1965.
dcterms.referencesF. S. Hillier and G. J. Lieberman, Investigación de operaciones, 10th ed., Madrid, España: McGraw-Hill Interamericana S.L., 2016.
dcterms.referencesC. Romero, “El enfoque multiobjetivo en los modelos matemáticos de planificación de cultivos,” Rev. Econ. Polit., vol. 89, pp. 179–204, Sept. 1981.
dcterms.referencesS. M. Lee, Goal Programming for Decision Analysis, Philadelphia, USA: Auerbach Pub., 1972.
dcterms.referencesJ. P. Ignizio, Goal programming and extensions, Toronto, Canada: Lexington Books, 1976.
dcterms.referencesC. Romero, Análisis de las decisiones multicriterio, vol. 14, Madrid, España: Isdefe, 1996.
dcterms.referencesÖ. Polat, Ö. Mutlu and E. Özgörmüş, “A Goal Programming Model For Assembly Line Balancing Problem Type 2 Under Workload Constraint.” in The 2015 Northeast Decision Sciences Conf., Cambridge, MA, March 2015.
dcterms.referencesM. C. O. Moreira, R. Pastor, A. M. Costa and C. Miralles, “The multi-objective assembly line worker integration and balancing problem of type-2,” Comput. Oper. Res., vol. 82, pp. 114–125, Jun. 2017, doi: https://doi.org/10.1016/j.cor.2017.01.003
dcterms.referencesA. J. R. Smith and A. Bhandari, “Multiple criteria approach to the stochastic assembly line balancing problem,” Proc. 33rd Int. Matador Conf., 2000, pp. 61–66.
dcterms.referencesO. Rosenberg and H. Ziegler, “A comparison of heuristic algorithms for cost-oriented assembly line balancing,” ZOR Zeitschrift fü Oper. Res. Methods Model. Oper. Res., vol. 36, no. 6, pp. 477–495, Nov. 1992. Available: https://link.springer.com/article/10.1007/BF01416240
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.17981/ingecuc.15.1.2019.10


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal