Show simple item record


dc.creatorGarcía-Guarín, Pedro Julián
dc.creatorCantor, Julián
dc.creatorCortés-Guerrero, Camilo
dc.creatorGuzmán Pardo, María Alejandra
dc.creatorRivera Rascón, Sergio Antonio
dc.date.accessioned2019-11-13T14:30:43Z
dc.date.available2019-11-13T14:30:43Z
dc.date.issued2019-06-08
dc.identifier.citationGarcía-Guarín, P., Cantor-López, J., Cortés-Guerrero, C., Guzmán-Pardo, M., & Rivera, S. (2019). Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes. INGE CUC, 15(1), 142-154. https://doi.org/10.17981/ingecuc.15.1.2019.13spa
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.identifier.urihttp://hdl.handle.net/11323/5640
dc.description.abstractIntroducción− Las redes eléctricas tradicionales están migrando a nuevas configuraciones de redes inteligentes, que traen retos operacionales y de planeación. Con miras a avanzar en estos retos se propone resolver un problema de optimización usando programación en elementos de redes distribuidas inteligentes. Objetivo− El problema de optimización consiste en adminis-trar el despacho energético de una red inteligente para opti-mizar los recursos disponibles, considerando la incertidum-bre de energías renovables, viajes planeados de vehículos eléctricos, el pronóstico de carga y los precios del mercado. Metodología− Se propuso utilizar un ensamble entre dos métodos heurísticos. El algoritmo VNS (Variable Neigh-borhood Search) y el DEEPSO (Differential Evolutionary Particle Swarm).Resultados− El algoritmo VNS-DEEPSO fue evaluado en una competencia de “Smart Grids” con otros algoritmos con un valor de 18.21, siendo 7 % mejor que el segundo algoritmo clasificado en la competencia.Conclusiones− El algoritmo VNS-DEEPSO fue ganador entre 9 algoritmos metaheurísticos que solucionaron el prob-lema, este problema tenía un mayor incremento de dificultad debida a la incertidumbre generada por factores ambien-tales, pronóstico de carga, viajes en vehículos eléctricos y el mercado de precios. Acorde a los resultados, el algoritmo VNS-DEEPSO demostró ser el más eficiente en minimizar los costos operacionales y maximizar los ingresos de la red inteligente.spa
dc.description.abstractIntroduction− Traditional electric networks are mi-grating to new configurations of intelligent networks, which bring operational and planning challenges. In order to advance in these challenges, an optimization problem is proposed to solve in the programming of intelligent network elements.Objective− The optimization problem consists of man-aging the energy dispatch of an intelligent network to optimize the available resources, considering the uncer-tainty of renewable energies, planned trips of electric vehicles, cargo forecast and market prices.Methodology− It was proposed to use an assembly between two heuristic methods. The VNS algorithm (Variable Neighborhood Search) and the DEEPSO (Dif-ferential Evolutionary Particle Swarm).Results− The value obtained by the VNS-DEEPSO algorithm was 18.21, being 7 % better than the second algorithm classified in the competition. Conclusions− The VNS-DEEPSO algorithm was the winner among 9 metaheuristic algorithms that solved the problem. This problem has a greater increase in difficulty due to the uncertainty generated by weather conditions, load forecast, planned EV ́s trips, and mar-ket prices. According to the results, the VNS-DEEPSO algorithm proved to be the most efficient in minimizing operational costs and maximizing the revenues of the intelligent network.eng
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 15, Núm. 1 (2019)
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceINGE CUCspa
dc.subjectAlgoritmos Heurísticosspa
dc.subjectEnergía Renovablespa
dc.subjectOptimizaciónspa
dc.subjectSmart Gridspa
dc.subjectVehículos Eléctricosspa
dc.subjectHeuristic Algorithms;spa
dc.subjectRenewable energyspa
dc.subjectOptimizationspa
dc.subjectIntelligent Networkspa
dc.subjectElectric Vehiclesspa
dc.titleImplementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentesspa
dc.title.alternativeImplementation of the VNS-DEEPSO algorithm for the energy dispatch in smart distributed gridspa
dc.typeArticlespa
dcterms.referencesM. Tuballa and M. Abundo, “A review of the development of Smart Grid technologies,” Renewable and Sustainable Energy Reviews, vol. 59, no. 1, pp. 710–725, Jun. 2016. Doi: https://doi.org/10.1016/j.rser.2016.01.011spa
dcterms.referencesF. Lezama, J. Soares, Z. Bale, J. Rueda, S. Rivera and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm and Evolutionary Computation, vol. 44, no. 1, pp. 420–427, Feb. 2019. Doi: https://doi.org/10.1016/j.swevo.2018.05.005
dcterms.referencesO. Dzobo, A. M. Shehata and C. L Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty”. In AFRICON, 2017 IEEE., Cape Town, South Africa, Sept. 18–20, 2019, pp. 1277–1282. Doi: https://doi.org/10.1109/AFRCON.2017.8095666
dcterms.referencesF. Lezama, J. Soares, Z. Bale and J. Rueda, “WCCI 2018 Competition Evolutionary Computation in Uncertain Environments: A Smart Grid Application. Test bed: Optimal scheduling of distributed energy resources considering uncertainty of renewables, EVs, load forecast and market prices,” in Proc. IEEE WCCI, Rio de Janeiro, Brazil, Jul. 8–13, 2018, pp. 1–19. Available in: http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/
dcterms.referencesY. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments—A Survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3. pp. 303–317, Jun. 2005. Doi: https://doi.org/10.1109/TEVC.2005. 846356
dcterms.referencesM. Gendreau and J.-Y. Potvin, “Handbook of Metaheuristics,” vol. 2, Switzerland: Springer Science+Business Media, 2010. Doi: https://doi.org/10.1007/978-1-4419-1665-5
dcterms.referencesY. Zhao, J. Cao, X. Lai, C. Yin and T. Chen, “Ensemble based constrained-optimization extreme learning machine for landmark recognition,” 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 Jul. 2015, pp. 3884–3889. Doi: https://doi.org/10.1109/ChiCC.2015.7260239
dcterms.referencesS. Hui and P. N. Suganthan, “Ensemble and Arithmetic Recombination-Based Speciation Differential Evolution for Multimodal Optimization,” in IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 64–74, Jan. 2016. Doi: https://doi.org/10.1109/TCYB.2015.2394466
dcterms.referencesX. Li, S. Ma and Y. Wang, “Multi-Population Based Ensemble Mutation Method for Single Objective Bilevel Optimization Problem,” in IEEE Access, vol. 4, no. 1, pp. 7262–7274, Oct. 2016. Doi: https://doi.org/10.1109/ACCESS.2016.2617738
dcterms.referencesV. Miranda and R. Alves, “Differential Evolutionary Particle Swarm Optimization (DEEPSO): A Successful Hybrid,” 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, Ipojuca, Brazil, 8–11 Sept. 2013, pp. 368–374. Doi: https://doi.org/10.1109/BRICS-CCICBIC.2013.68
dcterms.referencesD. G. Mayer, B. P. Kinghorn and A. A. Archer, “Differential evolution – an easy and efficient evolutionary algorithm for model optimisation,” Agricultural Systems, vol 83, no. 3, pp. 315–328, Mar. 2005. Doi: https://doi.org/10.1016/j.agsy.2004.05.002
dcterms.referencesF. Marini and B. Walczak, “Particle swarm optimization (PSO). A tutorial,” Chemometrics and Intelligent Laboratory Systems, vol 149, Part B, pp. 153–165, Dec. 2015. DOI: https://doi.org/10.1016/j.chemolab.2015.08.020
dcterms.referencesP. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” European Journal of Operational Research, vol. 130, no. 3, pp. 449–467, May. 2001. Doi: https://doi.org/10.1016/S0377-2217(00)00100-4
dcterms.referencesE. Vargas, L. Macedo, P. Bueno and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” International Journal of Electrical Power & Energy Systems, vol. 94, no. 1, pp. 41–56, Jan. 2018. Doi: https://doi.org/10.1016/j.ijepes.2017.06.017
dcterms.referencesR. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, M. Nuschke, J. Montoya and D. Strauss-Mincu, “Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies,” in 2018 IEEE Workshop on Complexity in Engineering, Florence, Italy, Oct. 10–12, 2018. pp. 1–6. Doi: https://doi.org/10.1109/CompEng.2018.8536223
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionspa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1984
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.17981/ingecuc.15.1.2019.13
dc.identifier.eissn2382-4700
dc.identifier.pissn0122-6517


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal