Show simple item record

dc.creatorde Souza, Rodrigo P
dc.creatorPacheco, Fernanda
dc.creatorPrager, Gustavo
dc.creatorGil, Augusto M.
dc.creatorChrist, Roberto
dc.creatorMuller de Mello, Vinícius
dc.creatorTutikian, Bernardo
dc.date.accessioned2019-11-14T16:24:54Z
dc.date.available2019-11-14T16:24:54Z
dc.date.issued2019-11-07
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/11323/5654
dc.description.abstractMasonry has been widely used as a construction method. However, there is a lack of information on its fire behavior due to the multitude of variables that could influence this method. Thispaperaimedtoidentifytheinfluenceofloadingandmortarcoatingthicknessonthefirebehavior of masonry. Hence, six masonries made of clay tiles laid with mortar were evaluated. The mortar coatinghadathicknessof25mmonthefacenotexposedtohightemperatures,whilethefire-exposed face had thicknesses of 0, 15, and 25 mm. For each mortar coating thickness, two specimens were tested, with and without loading of 10 tf/m. The real-scale specimens were subjected to the standard ISO 834 fire curve for four hours, during which the properties of stability, airtightness, and thermal insulation were assessed. Results showed that loaded specimens yielded smaller deformations than unloadedones. Samplesthatlackedmortarcoatingonthefire-exposedfaceunderwentfireresistance decreaseof27.5%,whiletheoneswith15mmdecreasedby58.1%,andtheoneswith25mmdecreased by 41.0%. As mortar coating thickness increased, the plane deformations decreased from 40 mm to 29 mm and the thermal insulation properties of the walls improved significantly. For specimens with mortarcoatingthicknessof25mm,theloadapplicationresultedinareductionof23.8%ofthethermal insulation, while the unloaded specimen showed a decrease of 43.3%, as well as a modification of its fire-resistance rating.spa
dc.language.isoengspa
dc.publisherMaterialsspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectStructural masonryspa
dc.subjectMortar coatingspa
dc.subjectFire resistancespa
dc.titleVerification of the influence of loading and mortar coating thickness on resistance to high temperatures due to fire on load-bearing masonries with clay tilesspa
dc.typeArticlespa
dcterms.references1. Gil, A.; Pacheco, F.; Christ, R.; Bolina, F.L.; Khayat, K.H.; Tutikian, B.F. Comparative study of concrete panels’ fire resistance. Aci Mater. J. 2017, 114, 755–762. [CrossRef] 2. Buchanan, A.H.; Abu, A.K. Structural Design for Fire Safety; Wiley: Chichester, UK, 2017. 3. Silva, V.P. Projeto de Estruturas de Concreto em Situação de Incêndio; Blücher: São Paulo, Brazil, 2012. 4. Martinho, E.; Dionísio, A. Assessment Techniques for Studying the Effects of Fire on Stone Materials: A Literature Review. Int. J. Archit. Herit. 2018. [CrossRef] 5. Guo, Z.; Shi, X. ExperimentandCalculationofReinforcedConcreteatElevatedTemperatures; Elsevier: London, UK, 2011. 6. Mitidieri, M.L. O comportamento dos materiais e componentes construtivos diante do fogo — reação ao fogo. In A Segurança Contra Incêndio No Brasil Brasil; Seito, A.I., Gill, A.A., Pannoni, F.D., Ono, R., Silva, S.B., Del Carlo, U., Pignatta e Silva, V., Eds.; Projeto Editora; Blücher: São Paulo, Brazil, 2008; pp. 55–75. 7. Marcatti, J.; Coelho Filho, H.S.; Berquó Filho, J.E. Compartimentação e afastamento entre edificações. In A Segurança Contra Incêndio No Brasil; Seito, A.I., Gill, A.A., Pannoni, F.D., Ono, R., Silva, S.B., Del Carlo, U., Pignatta e Silva, V., Eds.; Projeto Editora; Blücher: São Paulo, Brazil, 2008; pp. 169–179. 8. Al-Hadhrami, L.M.; Ahmad, A. Assessment of thermal performance of different types of masonry bricks used in Saudi Arabia. Appl. Therm. Eng. 2009, 29, 1123–1130. [CrossRef] 9. Nguyen, T.D.; Meftah, F. Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Saf. J. 2014, 66, 35–45. [CrossRef] 10. International Organization for Standardization (ISO). ISO834–1: Fire-ResistanceTests—ElementsofBuilding Construction—Part 1: General Requirements; ISO: Geneva, Switzerland, 1999. 11. Associação Brasileira de Normas Técnicas. NBR10636: Paredesdivisóriassemfunçãoestrutural-Determinação da resistência ao fogo- Método de ensaio; NBR: Rio de Janeiro, Brazil, 1989. 12. Associação Brasileira de Normas Técnicas. NBR5628: Componentesconstrutivosestruturais-Determinaçãoda resistência ao fogo. Rio de Janeiro, 2001; NBR: Rio de Janeiro, Brazil, 1989. 13. JapaneseStandardsAssociation(JSA).JISA1304: MethodofFireResistanceTestforStructuralPartsofBuildings; JSA: Tokyo, Japan, 1994. 14. American Society for Testing Materials (ASTM). ASTM E119-16a: Standard Test Methods for Fire Tests of Building Construction and Materials; ASTM International: West Conshohocken, PA, USA, 2016. 15. Gomez-Heras, M.; McCabe, S.; Smith, B.J.; Fort, R. Impacts of Fire on Stone-Built Heritage. J. Archit. Conserv. 2009, 15, 47–58. [CrossRef] 16. Rosemann, F. Resistência ao Fogo de Paredes de Alvenaria Estrutural de Blocos Cerâmicos Pelo Critério de Isolamento Térmico. Master’s Thesis, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil, 2011. 17. Seito, A.I.; Gill, A.A.; Pannoni, F.D.; Bento da Silva, R.O.S.; Carlo, U.D.; Silva, V.P.E. A SegurançA Contra Incêndio no Brasil; Blücher: São Paulo, Brazil, 2008. 18. ONO, R. Parâmetros para garantia da qualidade do projeto de segurança contra incêndio em edifícios altos. Ambiente Constr. 2007, 7, 97–113. 19. Brick Industry Association (BIA). Technical Note 16: Fire Resistance of Brick Masonry; The Brick Industry Association: Reston, VA, USA, 2008. 20. Nadjai, A.; O’Gara, M.; Ali, R.; Jurgen, R. Compartment masonry walls in fire situations. Fire Technol. 2006, 42, 211. [CrossRef] 21. Nguyen, T.D.; Meftah, F.; Chammas, R.; Chammas, A. The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks. Fire Saf. J. 2009, 44, 629–641. [CrossRef] 22. Beall, C. Masonry Design and Detailing: For Architects, Engineers, and Contractors, 4th ed.; McGraw-Hill Companies: New York, NY, USA, 1997. 23. Ayala,R.MechanicalPropertiesandStructuralBehaviourofMasonryatElevatedTemperatures. Ph.D.Thesis, University of Manchester, Manchester, UK, 2011. 24. RIGÃO, A.O. Comportamento de Pequenas Paredes de Alvenaria Estrutural Frente a Altas Temperaturas. Master’s Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2012. 25. Nadjai,A.;O’gara,M.;Ali,F.Finiteelementmodellingofcompartmentmasonrywallsinfire. Comput. Struct. 2003, 81, 1923–1930. [CrossRef] 26. Ingham, J.P. Forensic engineering of fire-damaged concrete structures. In Forensic engineering: From failure to understanding; Neale, B.S., Ed.; Thomas Telford Publishing: London, UK, 2009; pp. 393–402. 27. Ehrenbring,H.Z.;Quinino,U.;Oliveira,L.S.;Tutikian,B.F.Experimentalmethodforinvestigatingtheimpact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct. Concr. 2019, 20, 1064–1075. [CrossRef] 28.Pacheco,F.;Souza,R.;Christ,R.;Rocha,C.;Silva,L.;Tutikian,B.F.Determinationofvolumeanddistribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Struct. Conc. 2018, 19, 1419–1427. [CrossRef] 29. Silva, F.A.N.; Oliveira, R.A.; Sobrinho, C.W.P. Influence of the mortar covering on the strength of clay masonry walls. In XXXIII Jornadas Sudamericanas de Ingenieria Estructural; Asaee: Santiago, Chile, 2008. 30. American society for Testing Materials (ASTM). ASTM C 150 - 19a Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2019. 31. British Standard. EN 933–1: Tests for geometrical properties of aggregates Part 1- Sieving method; BSI: London, UK, 2012. 32. American Society for Testing Materials (ASTM). ASTM C 652 - 19 Standard Specification for Hollow Brick (Hollow Masonry Units Made from Clay or Shale); ASTM: West Conshohocken, PA, USA, 2019. 33. Georgantas, A.; Brédif, M.; Pierrot- Desseilligny, M. An accuracy assessment of automated photogrammetric techniques for 3D modelling of complex interiors. Intelect. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2012, 39, 23–28. [CrossRef] 34. Klippel, F.S.; Prager, G.L.; Mezzomo, P.; Bolina, F.; Tutikian, B.F. Comparative study of fire resistance and acoustic performance of ceramic brick walls in concern to NBR 15575 in residential buildings in Brazil. DYNA (Medellín) 2018, 85, 53–58. 35.Fernandes,B.;Gil,A.M.;Bolina,F.L.;Tutikian,B.F.Thermaldamageevaluationoffullscaleconcretecolumns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín) 2018, 85, 123–128. [CrossRef] 36. American Concrete Institute (ACI). TMS—The Masonry Society- ACI TMS 216.1—Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies; ACI: Farmington Hills, MI, USA, 2007.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal