Show simple item record

dc.creatorCardona-Almeida, Cesar Antonio
dc.creatorObregón, Nelson
dc.creatorCanales, Fausto
dc.date.accessioned2019-11-29T20:29:07Z
dc.date.available2019-11-29T20:29:07Z
dc.date.issued2019-11-29
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/11323/5713
dc.description.abstractHuman society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last decades, and some have included considerations about information. However, none of them has considered information as an active variable or flowing entity in the human–natural/social-ecological system, or, moreover, even as a driving force of their interactions. This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual frame focused on the exchange of information, matter, and energy. The human population is presented as a convergence variable of these three physical entities, and a population distribution model for Colombia is developed based on the maximum entropy principle to integrate the balances of related variables as macro-state restrictions. The selected variables were electrical consumption, water demand, and higher education rates (energy, matter, and information). The final model includes statistical moments for previous population distributions. It is shown how population distribution can be predicted yearly by combining these variables, allowing future dynamics exploration. The implications of this model can contribute to bridging information sciences and sustainability studies.spa
dc.language.isoengspa
dc.publisherEntropyspa
dc.relation.ispartofhttps://doi.org/10.3390/e21121172spa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectIntegrated modellingspa
dc.subjectSocial-ecological systemsspa
dc.subjectMaximum entropy principlespa
dc.subjectEnergy and informationspa
dc.subjectHuman population distributionspa
dc.titleAn integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flowspa
dc.typeArticlespa
dcterms.references2. Freeman, C.; Louca, I.F.; Louca, F.; Louçã, F.; Iseg, F.L. As Time Goes by: From the Industrial Revolutions to the Information Revolution; Oxford University Press, Oxford, UK, 2001; ISBN 978-0-19-924107-1.spa
dcterms.references3. Pahl-Wostl, C.; Craps, M.; Dewulf, A.; Mostert, E.; Tabara, D.; Taillieu, T. Social Learning and Water Resources Management. Ecol. Soc. 2007, 12. doi:10.5751/ES-02037-120205.spa
dcterms.references4. Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Smit, B. Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks. Phys. Chem. Chem. Phys. 2008, 10, 3244.spa
dcterms.references5. Pastor, J. Mathematical Ecology of Populations and Ecosystems; John wiley and Sons: Oxford, UK, 2008.spa
dcterms.references6. Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Carlos, A.D.; Crooks, K.R. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 2018, 225, 80–87.spa
dcterms.references7. Dressel, S.; Ericsson, G.; Sandström, C. Mapping social-ecological systems to understand the challenges underlying wildlife management. Environ. Sci. Policy 2018, 84, 105–112.spa
dcterms.references8. Binder, C.; Hinkel, J.; Bots, P.; Pahl-Wostl, C. Comparison of Frameworks for Analyzing Social-ecological Systems. Ecol. Soc. 2013, 18, 26.spa
dcterms.references9. Resiliance Alliance Social-Ecological Systems. Available online: http://www.resalliance.org/index.php/index.php?id=1268&sr=1&type=pop (accessed on 20 October 2013).spa
dcterms.references10. Stockholm Resilience Centre Resilience Dictionary. Available online: http://www.stockholmresilience.org/21/research/what-is-resilience/resilience-dictionary.html (accessed on 20 October 2013).spa
dcterms.references11. Virapongse, A.; Brooks, S.; Metcalf, E.C.; Zedalis, M.; Gosz, J.; Kliskey, A.; Alessa, L. A social-ecological systems approach for environmental management. J. Environ. Manag. 2016, 178, 83–91.spa
dcterms.references12. Hoole, A.; Berkes, F. Breaking down fences: Recoupling social–ecological systems for biodiversity conservation in Namibia. Geoforum 2010, 41, 304–317.spa
dcterms.references13. Mitchell, M.; Lockwood, M.; Moore, S.A.; Clement, S. Scenario analysis for biodiversity conservation: A social–ecological system approach in the Australian Alps. J. Environ. Manag. 2015, 150, 69–80.spa
dcterms.references14. Bair, L.S.; Yackulic, C.B.; Schmidt, J.C.; Perry, D.M.; Kirchhoff, C.J.; Chief, K.; Colombi, B.J. Incorporating social-ecological considerations into basin-wide responses to climate change in the Colorado River Basin. Curr. Opin. Environ. Sustain. 2019, 37, 14–19.spa
dcterms.references15. Nguyen, V.M.; Lynch, A.J.; Young, N.; Cowx, I.G.; Beard, T.D.; Taylor, W.W.; Cooke, S.J. To manage inland fisheries is to manage at the social-ecological watershed scale. J. Environ. Manag. 2016, 181, 312–325.spa
dcterms.references16. Vihervaara, P.; Franzese, P.P.; Buonocore, E. Information, energy, and eco-exergy as indicators of ecosystem complexity. Ecol. Model. 2019, 395, 23–27.spa
dcterms.references17. Fischer, A.P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 2018, 177, 138–147.spa
dcterms.references18. Izquierdo, L.R.; Galán, J.M.; Santos, J.I. Modelado de Sistemas Complejos Mediante Simulación Basada en Agentes y Mediante Dinámicas de Sistemas. EMPIRIA Rev. Metodol. Cienc. Soc. 2008, 16, 85–112.spa
dcterms.references19. Harou, J.; Pulido-Velazquez, M.; Rosenberg, D.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R. Hydroeconomic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643.spa
dcterms.references20. Engelen, G.; White, R.; Uljee, I.; Drazan, P. Using cellular automata for integrated modelling of socioenvironmental systems. Environ. Monit. Assess. 1995, 34, 203–214.spa
dcterms.references21. White, R.; Engelen, G. Integrating constrained cellular automata models, GIS and decision support tools for urban planning and policy-making. In Decision Support Systems in Urban Planning; Routledge: Abingdon, UK, 1997.spa
dcterms.references22. Baggio, J.A.; Hillis, V. Managing ecological disturbances: Learning and the structure of social-ecological networks. Environ. Model. Softw. 2018, 109, 32–40.spa
dcterms.references23. van Delden, H.; Seppelt, R.; White, R.; Jakeman, A.J. A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 2011, 26, 266–279.spa
dcterms.references24. Cardona-Almeida, C. Aproximación A Un Marco De Referencia Para el Análisis Integrado De Sistemas Socioecológicos En El Contexto Colombiano, Propuesta De Un Modelo Conceptual Y Desarrollo De Un Modelo Demográfico; Pontificia Universidad Javeriana de Bogotá: Barranquilla, Colombia, 2018.spa
dcterms.references25. Bellmann, K. Towards to a system analytical and modelling approach for integration of ecological, hydrological, economical and social components of disturbed regions. Landsc. Urban Plan. 2000, 51, 75–87.spa
dcterms.references26. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422.spa
dcterms.references27. Robinson, L.; Bawden, D. Mind the Gap: Transitions Between Concepts of Information in Varied Domains. In Theories of Information, Communication and Knowledge; Springer: Dordrecht, The Netherlands, 2014; pp. 121–141.spa
dcterms.references28. Kraker, J. de Social learning for resilience in social–ecological systems. Curr. Opin. Environ. Sustain. 2017, 28, 100–107.spa
dcterms.references29. Gil, M.A.; Hein, A.M.; Spiegel, O.; Baskett, M.L.; Sih, A. Social Information Links Individual Behavior to Population and Community Dynamics. Trends Ecol. Evol. 2018, 33, 535–548.spa
dcterms.references30. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259.spa
dcterms.references31. Wilson, A. Entropy in Urban and Regional Modelling (Routledge Revivals); Routledge: Abingdon, UK, 2013; ISBN 978-1-136-49852-7.spa
dcterms.references32. Wilson, A. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 364– 394.spa
dcterms.references33. Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236.spa
dcterms.references34. Bajat, B.; Hengl, T.; Kilibarda, M.; Krunić, N. Mapping population change index in Southern Serbia (1961– 2027) as a function of environmental factors. Comput. Environ. Urban Syst. 2011, 35, 35–44.spa
dcterms.references35. Zhao, J.; Cao, C.; Li, Q. Human settlement suitability assessment considering climate and DEM. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3857–3860.spa
dcterms.references36. Hernando, A.; Hernando, R.; Plastino, A.; Plastino, A.R. The workings of the maximum entropy principle in collective human behaviour. J. R. Soc. Interface 2013, 10, 20120758.spa
dcterms.references37. Georgescu-Roegen, N. La Ley de la Entropía Y El Proceso Económico; economía y naturaleza; Fundación Argentaria: Madrid, Spain, 1996; ISBN 84-7774-973-6.spa
dcterms.references38. Carpintero, O. La Bioeconomía De Georgescu-Roegen; Editorial Montesinos: Montesinos, Spain, 2006; ISBN 978-84-96356-63-4.spa
dcterms.references39. Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Philadelphia, PA, USA, 1925.spa
dcterms.references40. Lindeman, R.L. The Trophic-Dynamic Aspect of Ecology. Ecology 1942, 23, 399–417.spa
dcterms.references41. Haberl, H. Energy Flow Analysis. In International Encyclopedia of the Social & Behavioral Sciences (Second Edition); Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 626–632, ISBN 978-0-08-097087-5.spa
dcterms.references42. Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H.; Winiwarter, V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 2004, 21, 199–213.spa
dcterms.references43. Suh, S. Theory of materials and energy flow analysis in ecology and economics. Ecol. Model. 2005, 189, 251– 269.spa
dcterms.references44. Liao, W.; Heijungs, R.; Huppes, G. Thermodynamic analysis of human–environment systems: A review focused on industrial ecology. Ecol. Model. 2012, 228, 76–88.spa
dcterms.references45. Giampietro, M.; Mayumi, K. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability. Struct. Change Econ. Dyn. 1997, 8, 453–469.spa
dcterms.references46. Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An Outline of Rationale and Theory. Working Paper. Autonomous University of Barcelona, Bellaterra, Barcelona, Spain. 2008.spa
dcterms.references47. Gerber, J.-F.; Scheidel, A. In Search of Substantive Economics: Comparing Today’s Two Major Sociometabolic Approaches to the Economy—MEFA and MuSIASEM. Ecol. Econ. 2018, 144, 186–194.spa
dcterms.references48. Jorgensen, S.E.; Svirezhev, Y.M. Towards a Thermodynamic Theory for Ecological Systems; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-047174-7.spa
dcterms.references49. Jorgensen, S.E. Introduction to Systems Ecology; CRC Press: Copenhagen, Denmark, 2012; ISBN 978-1-43985520-1.spa
dcterms.references50. Jorgensen, S.E.; Tundisi, J.G.; Tundisi, T.M. Handbook of Inland Aquatic Ecosystem Management; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-4526-4.spa
dcterms.references51. Bawden, D.; Robinson, L. “Deep down things”: In what ways is information physical, and why does it matter for information science? Inf. Res. 2013, 18, C03.spa
dcterms.references52. Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-0-471-11442-0.spa
dcterms.references53. Miller, W.B. Biological information systems: Evolution as cognition-based information management. Prog. Biophys. Mol. Biol. 2018, 134, 1–26.spa
dcterms.references54. Andrade, E. Los Demonios De Darwin: Semiótica Y Termodinámica De La Evolución Biológica; Editiorial Universidad Nacional de Colombia: Bogotá, Colombia, 2003.spa
dcterms.references55. Andrade, E. How Deep is the Conflict Between Self-Organization and Natural Selection? Ludus Vitalis 2011, 19, 289–311.spa
dcterms.references56. Kulahci, I.G.; Quinn, J.L. Dynamic Relationships between Information Transmission and Social Connections. Trends Ecol. Evol. 2019, 34, 545–554.spa
dcterms.references57. Dolgonosov, B.M.; Naidenov, V.I. An informational framework for human population dynamics. Ecol. Model. 2006, 198, 375–386.spa
dcterms.references58. Dolgonosov, B. Knowledge production and world population dynamics. Technol. Forecast. Soc. Chang. 2016, 103, 127–141.spa
dcterms.references59. de Lange, E.; Milner-Gulland, E.J.; Keane, A. Milner-Gulland, E.J.; Keane, A. Improving Environmental Interventions by Understanding Information Flows. Trends Ecol. Evol. 2019, 34, 1034–1047.spa
dcterms.references60. Siebenhüner, B.; Rodela, R.; Ecker, F. Social learning research in ecological economics: A survey. Environ. Sci. Policy 2016, 55, 116–126.spa
dcterms.references61. Odum, H.T. Self Organization, Transformity, and Information. Available online: http://scihub.cc/10.1126/science.242.4882.1132 (accessed on 12 Sepember 2016).spa
dcterms.references62. Jørgensen, S.E.; Ludovisi, A.; Nielsen, S.N. The free energy and information embodied in the amino acid chains of organisms. Ecol. Model. 2010, 221, 2388–2392.spa
dcterms.references63. Carroll, S. The Big Picture; DUTTON: New York, NY, USA, 2017; ISBN 1-101-98425-2.spa
dcterms.references64. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656.spa
dcterms.references65. Zurek, W.H. Complexity, Entropy, and the Physics of Information: The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information Held May-June, 1989, in Santa Fe, New Mexico; AddisonWesley: Boston, MA, USA, 1990; ISBN 978-0-201-51506-0.spa
dcterms.references66. McKenzie, D.H.; Hyatt, D.E.; McDonald, V.J. Ecological Indicators; Springer: Berlin, Germany, 2012; ISBN 978-1-4615-4659-7.spa
dcterms.references67. Sisaye, S. The Ecology of Management Accounting and Control Systems: Implications for Managing Teams and Work Groups in Complex Organizations; Greenwood Publishing Group: Westport, CT, USA, 2006; ISBN 9781-56720-521-3.spa
dcterms.references68. Anisimov, V. On the Law of Increasing Complexity of Evolutionary Systems. Available online: http://aicommunity.narod.ru/TheBase/KombEvol.html (accessed on 23 December 2016).spa
dcterms.references69. Voort, G.F.V. ASM Handbook; ASM International: Cleveland, OH, USA, 2004; ISBN 978-0-87170-706-2.spa
dcterms.references70. Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630.spa
dcterms.references71. Agmon, N.; Alhassid, Y.; Levine, R.D. An algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 1979, 30, 250–258.spa
dcterms.references72. Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-42860-3.spa
dcterms.references73. Kapur, J.N.; Kesavan, H.K. Entropy Optimization Principles and Their Applications; Springer: Dordrecht, the Netherlands, 1992.spa
dcterms.references74. Mohammad-Djafari, A. A Matlab program to calculate the maximum entropy distributions. In Maximum Entropy and Bayesian Methods; Springer: Dordrecht, The Netherlands, 1992; pp. 221–233.spa
dcterms.references75. SCImago SJR—SCImago Journal & Country Rank. Retrieved July 21, 2015. Available online: http://www.scimagojr.com/aboutus.php (accessed on 28 November 2017).spa
dcterms.references76. Kapur, J.N. Maximum-Entropy Models in Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989; ISBN 978-81-224-0216-2.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/publicdomain/zero/1.0/