Show simple item record


dc.creatorRIASCOS GONZALEZ, CARLOS ANDRÉS
dc.creatorThomson, Peter
dc.creatorDyke, Shirley
dc.date.accessioned2020-01-10T22:10:03Z
dc.date.available2020-01-10T22:10:03Z
dc.date.issued2019-09-13
dc.identifier.citationRiascos-González, C., Thomson, P., & Dyke, S. (2019). Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real. INGE CUC, 15(2), 11-22. https://doi.org/10.17981/ingecuc.15.2.2019.02spa
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.identifier.urihttp://hdl.handle.net/11323/5806
dc.description.abstractIntroduction− In this paper, the Real-time Hybrid Simulation (RTHS) of a Non-linear Tuned Mass Damper (NTMD) is described, and compares the results with those obtained from conventional experimental tests of a shear, single-storey structure with the NTMD. Objective− The objetive of this article is to evaluate the effectiveness of an RTHS in estimating the performance of an NTMD. Methodology− The methodology consisted of the following three stages: main structure identification, NTMD design, and experimental evaluation of the structure-NTMD system. For the third stage, RTHS and vibrating table tests were used. Results− The results of the vibrating table tests showed that the NTMD reduced 77% and 63% of the peak accelerations and RMS of the main structure, with respect to the structure without control. The values of these reductions obtained with RTHS were 73% and 63%, respectively. The precision indices of the transfer system corresponded to a generalized amplitude of 1.01 and a delay of 2 ms. Conclusions− The NTMD, with a mass ratio of 10%, achieved reductions of more than 60% of the structural response. RTHS and the vibrating table test demonstrated that the NTMDstructure system had only one peak in frequency response. The noise in the RTHS feedback increased the degree of damping of the controlled structure. Finally, the experimental results demonstrated how RTHS is a technique that effectively predicts the RMS acceleration of the structure-NTMD system and can slightly overestimate its peak acceleration.eng
dc.description.abstractIntroducción− En este artículo se describe la Simulación Híbrida en Tiempo Real (RTHS) de un Amortiguador no Lineal de Masa Sintonizado (NTMD) y se comparan los resultados con los obtenidos de ensayos experimentales convencionales de una estructura a cortante, de un piso, con el NTMD. Objetivo− El objetivo de este artículo es valuar la efectividad de una RTHS para estimar el desempeño de un NTMD. Metodología− La metodología consistió de las siguientes tres etapas: identificación de la estructura principal, diseño del NTMD y evaluación experimental del sistema estructura-NTMD. Para la tercera etapa, se utilizaron RTHS y ensayos sobre mesa vibratoria. Resultados− Los resultados de los ensayos en mesa vibratoria demostraron que el NTMD redujo el 77% y 63% de las aceleraciones pico y RMS de la estructura principal, con respecto a la estructura sin control. Los valores de estas reducciones obtenidos con RTHS fueron 73% y 63%, respectivamente. Los índices de precisión del sistema de transferencia correspondieron a una amplitud generalizada de 1.01 y un retraso de 2 ms. Conclusiones− El NTMD, con una razón de masas del 10%, alcanzó reducciones superiores al 60% de la respuesta estructural. La RTHS y el ensayo de mesa vibratoria demostraron que el sistema estructura-NTMD tuvo solo un pico en la respuesta en frecuencia. El ruido en la retroalimentación de la RTHS aumentó el grado de amortiguamiento de la estructura controlada. Finalmente, los resultados experimentales demostraron como la RTHS es una técnica que predice efectivamente la aceleración RMS del sistema estructura-NTMD y puede sobreestimar ligeramente su aceleración pico.spa
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 15, Núm. 2 (2019)
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceINGE CUCspa
dc.subjectControl estructuralspa
dc.subjectAmortiguador no lineal de masa sintonizadospa
dc.subjectSimulación híbrida en tiempo realspa
dc.subjectMesa vibratoriaspa
dc.subjectInteracción amortiguador-estructuraspa
dc.subjectStructural controlspa
dc.subjectNon-linear tuned mass damp-erspa
dc.subjectReal-time hybrid simulationspa
dc.subjectShaking tablespa
dc.subjectDamper-struc-ture interactionspa
dc.titleEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo realspa
dc.title.alternativePerformance evaluation of a non-linear tuned mass damper through real-time hybrid simulationspa
dc.typeArticlespa
dcterms.references[1] J. A. Oviedo and M. D. P. Duque, “Status of seismic response control techniques in Colombia,” Rev. EIA, vol. 2009, no. 12, pp. 113–124, Jan. 2009.spa
dcterms.references[2] A. Filiatrault and C. Christopoulos, Principles of passive supplemental damping and seismic isolation. IUSS Press, Pavia, Italy, 2006.spa
dcterms.references[3] C. Sun, S. Nagarajaiah and A. J. Dick, “Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel,” Nonlinear Dyn., vol 78, no. 4, pp. 2699– 2715, Aug. 2014. https://doi.org/10.1007/s11071-014- 1619-3spa
dcterms.references[4] G. Gatti, “Fundamental insight on the performance of a nonlinear tuned mass damper,” Meccanica, vol. 53, no. 1–2, pp. 111–123, Jul. 2018. https://doi.org/10.1007/s11012-017-0723-0spa
dcterms.references[5] V. Gattulli and A. Luongo, “Nonlinear tuned mass damper for self-excited oscillations,” Wind Struct., vol. 7, no. 4, pp. 251–264, Aug. 2004. https://doi.org/10.12989/was.2004.7.4.251spa
dcterms.references[6] Y. R. Wang, C. K. Feng and S. Y. Chen, “Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam,” J. Sound Vib., vol. 430, pp. 150–173, Sep. 2018. https://doi.org/10.1016/j. jsv.2018.05.033spa
dcterms.references[7] b. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibration response,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 11, pp. 4514–4523, Nov. 2011. https://doi. org/10.1016/j.cnsns.2011.02.011spa
dcterms.references[8] K.-C. Chen, J.-H. Wang, b.-S. Huang, C.-C. Liu, and W.-G. Huang, “Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan,” Earth, Planets Sp., vol. 64, no. 12, pp. 1277–1286, Jan. 2013.spa
dcterms.references[9] P. V. b. Guimarães, M. V. G. de Morais and S. M. Avila, “Tuned Mass Damper Inverted Pendulum to Reduce Offshore Wind Turbine Vibrations,” in Vibration Engineering and Technology of Machinerym, J. K. Sinha, Ed., Mánchester: University of Manchester, UK., 2015, pp. 379–388. https://doi.org/10.1007/978-3-319-099187_34spa
dcterms.references[10] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Energy-based procedure for monitoring experimental errors in hybrid simulations,” in 8NCEE, 100th Anniversary Earthquake Conference, San Francisco, CA, Apr. 18–22 2006, pp. 1535–1544spa
dcterms.references[11] G. Mosqueda, b. Stojadinovic and S. A. Mahin, “Realtime error monitoring for hybrid simulation. Part I: methodology and experimental verification,” J. Struct. Eng., vol. 133, no. 8, pp. 1100–1108, Aug. 2007. https:// doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100)spa
dcterms.references[12] A. Maghareh, A. I. Ozdagli and S. J. Dyke, “Modeling and implementation of distributed real-time hybrid simulation,” in NCEE 2014, 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, Alaska, Jul. 21–25, 2014. https://doi.org/10.4231/D32B8VC4Fspa
dcterms.references[13] Y. Qian, G. Ou, A. Maghareh and S. J. Dyke, “Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation,” Mech. Syst. Signal Process., vol. 48, no. 1–2, pp. 260–273, Oct. 2014. https:// doi.org/10.1016/j.ymssp.2014.03.001spa
dcterms.references[14] M. L. brodersen, G. Ou, J. Høgsberg and S. Dyke, “Analysis of hybrid viscous damper by real time hybrid simulations,” Eng. Struct., vol. 126, pp. 675–688, Nov. 2016. https://doi.org/10.1016/j.engstruct.2016.08.020spa
dcterms.references[15] R. zhang, P. V Lauenstein and b. M. Phillips, “Real-time hybrid simulation of a shear building with a uni-axial shake table,” Eng. Struct., vol. 119, pp. 217–229, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.04.022spa
dcterms.references[16] J. T. Wang, Y. Gui, F. Zhu, F. Jin and M. X. Zhou, “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper,” Struct. Control Heal. Monit., vol. 23, no. 7, pp. 1015–1031, Dec. 2016. https:// doi.org/10.1002/stc.1822spa
dcterms.references[17] F. zhu, J. T. Wang, F. Jin and L. Q. Lu, “Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures,” Eng. Struct., vol. 138, pp. 74–90, May. 2017. https://doi. org/10.1016/j.engstruct.2017.02.004spa
dcterms.references[18] C. Chen, J. M. Ricles, T. L. Karavasilis, Y. Chae and R. Sause, “Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading,” Eng. Struct., vol. 35, pp. 71–82, Feb. 2012. https://doi. org/10.1016/j.engstruct.2011.10.006spa
dcterms.references[19] M. S. Williams and A. blakeborough, “Laboratory testing of structures under dynamic loads: An introductory review,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 359, no. 1786. pp. 1651–1669, Sep. 2001. https://doi. org/10.1098/rsta.2001.0860spa
dcterms.references[20] W. J. Chung, C. b. Yun, N. S. Kim and J. W. Seo, “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures,” Eng. Struct., vol. 21, no. 4, pp. 365–379, Apr. 1999. https://doi.org/10.1016/S0141-0296(97)00211-3spa
dcterms.references[21] G. Ou, S. J. Dyke and A. Prakash, “Real time hybrid simulation with online model updating: An analysis of accuracy,” Mech. Syst. Signal Process., vol. 84, Part. B. pp. 223–240, Feb. 2017. https://doi.org/10.1016/j.ymssp.2016.06.015spa
dcterms.references[22] X. Gao, N. Castaneda and S. J. Dyke, “Real time hybrid simulation: From dynamic system, motion control to experimental error,” Earthq. Eng. Struct. Dyn., vol. 42, no. 6, pp. 815–832, Aug. 2013. https://doi.org/10.1002/ eqe.2246spa
dcterms.references[23] G. Ou, A. Prakash and S. Dyke, “Modified Runge-Kutta Integration Algorithm for Improved Stability and Accuracy in Real Time Hybrid Simulation,” J. Earthq. Eng., vol. 19, no. 7, pp. 1112–1139, Jun. 2015. https://doi.org/1 0.1080/13632469.2015.1027018.spa
dcterms.references[24] G. Ou, A. I. Ozdagli, S. J. Dyke and b. Wu, “Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation,” Earthq. Eng. Struct. Dyn., vol. 44, no. 3, pp. 441–460, Oct. 2015. https://doi.org/10.1002/eqe.2479spa
dcterms.references[25] A. Friedman et al., “Large-scale real-time hybrid simulation for evaluation of advanced damping system performance,” J. Struct. Eng., vol. 141, no. 6, p. 04014150, Jul. 2015. https://doi.org/10.1061/(ASCE)ST.1943-541X. 0001093spa
dcterms.references[26] C. Riascos, J. Marulanda and P. Thomson, “Semi-active tuned liquid column damper implementation with realtime hybrid simulations,” Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, p. 979919, Apr. 2016. https://doi.org/10.1117/12.2220004spa
dcterms.references[27] G. Mosqueda, B. Stojadinović and S. A. Mahin, “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures,” Earthq. Eng. Res. Center, University of California, berkeley, CA, Tech. Rep. UCB/EERC, 2005.spa
dcterms.references[28] R. Christenson et al., “Hybrid Simulation: A Discussion of Current Assessment Measures,” Earthq. Eng. Res., NSF, NEES, West Lafayette, Indiana, Tech. Rep. Cmmi, 2014.spa
dcterms.references[29] A. Y. Tuan and G. Q. Shang, “Vibration control in a 101-storey building using a tuned mass damper,” J. Appl. Sci. Eng., vol. 17, no. 2, pp. 141–156, Jan. 2014. https:// doi.org/10.6180/jase.2014.17.2.05spa
dcterms.references[30] R. N. Jabary and G. S. P. Madabhushi, “Tuned Mass Damper Positioning Effects on the Seismic Response of a Soil-MDOF-Structure System,” J. Earthq. Eng., vol. 22, no. 2, pp. 281–302, Jan. 2018. https://doi.org/10.1080/136 32469.2016.1224743spa
dcterms.references[31] J. L. Almazán, J. C. De la Llera, J. A. Inaudi, D. LópezGarcía and L. E. Izquierdo, “A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations,” Eng. Struct., vol. 29, no. 7, pp. 1548–1560, Jul. 2007. https://doi.org/10.1016/j.engstruct.2006.09.005spa
dcterms.references[32] F. Weber, C. Boston and M. Maślanka, “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper,” Smart Mater. Struct., vol. 20, no. 1, Dec. 2011. https://doi. org/10.1088/0964-1726/20/1/015012spa
dcterms.references[33] D. C. Johnson, “Mechanical Vibrations,” Nature, vol. 169, no. 641, pp. 271–288, Abr. 1952. https://doi. org/10.1038/169641b0spa
dcterms.references[34] T. T. Soong and G. F. Dargush, Passive energy dissipation systems in structural engineering, New York, USA: MCEER, 1997.spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1963
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.17981/ingecuc.15.2.2019.02
dc.identifier.eissn2382-4700
dc.identifier.pissn0122-6517


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal