Show simple item record


dc.creatorLugo Martinez, Wilmer Alexander
dc.creatorAvila, Huber
dc.creatorVanegas, Marley
dc.creatorAlbis Arrieta, Alberto Ricardo
dc.creatorArdila, Marco
dc.date.accessioned2020-01-13T19:13:27Z
dc.date.available2020-01-13T19:13:27Z
dc.date.issued2019-05-04
dc.identifier.citationLugo Martinez, W., Avila Rios, H., Vanegas Chamorro, M., Albis Arrieta, A., & Ardila Barragán, M. (2019). Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia). INGE CUC, 15(2). https://doi.org/10.17981/ingecuc.15.2.2019.05spa
dc.identifier.issn2382-4700
dc.identifier.issn0122-6517
dc.identifier.urihttp://hdl.handle.net/11323/5812
dc.description.abstractIntroduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%.spa
dc.description.abstractIntroducción− El uso no energético de carbones de alto rango (antracitas) tiene un gran potencial en industrias tales como la metalurgia y en la síntesis de nuevos materiales carbonosos. Sin embargo, antes de su uso en estas aplicaciones, estos deben ser tratados para eliminar impurezas o compuestos no deseados. Objetivo− Evaluar la eficiencia del proceso de desmineralización química de semiantracitas mediante el uso de diferentes ácidos variando las condiciones de operación del proceso. Metodología− Se realizó la caracterización química de dos muestras: Boavita (B) y Capitanejo (C) provenientes de minas de Boyacá y Santander (Colombia), respectivamente. Se evaluó la remoción de cenizas y materia mineral de las muestras utilizando [HCl] = 5M, HF 40% y HCl 38% a dos diferentes tiempos de reacción (45 y 60 minutos) y dos tamaños de partícula del material (250 y 500 µm). Resultados− Los valores mínimos de contenido de cenizas (bs) alcanzados mediante el proceso de desmineralización para las muestras B y C, fueron 0,65 y 0,76% respectivamente, los cuales se obtuvieron con tamaño de partícula de 250 µm y 60 minutos de exposición en cada uno de los ácidos empleados en este estudio. Conclusiones− A menor tamaño de partícula se incrementa la superficie de contacto y mejora el grado de desmineralización, independientemente del tiempo de exposición a los ácidos. La eficiencia del beneficio químico muestra rendimientos en la reducción de silicatos, aluminatos y aluminosilicatos al 100%, mientras que para minerales férricos está por encima del 50%.spa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceINGE CUCspa
dc.subjectAnthracitespa
dc.subjectChemical beneficiatspa
dc.subjectMineral matterspa
dc.subjectDemineralizationspa
dc.subjectHydrochloric acidspa
dc.subjectHydrofluoric acidspa
dc.subjectAntracitasspa
dc.subjectBeneficio químicospa
dc.subjectMateria mineralspa
dc.subjectDesmineralizaciónspa
dc.subjectÁcido clorhídricospa
dc.subjectÁcido fluorhídricospa
dc.titleEvaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)spa
dc.title.alternativeEvaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)spa
dc.typeArticlespa
dcterms.references[1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001spa
dcterms.references[2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003spa
dcterms.references[3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.spa
dcterms.references[4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002spa
dcterms.references[5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.spa
dcterms.references[6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.spa
dcterms.references[7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072spa
dcterms.references[8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088spa
dcterms.references[9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004spa
dcterms.references[10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.spa
dcterms.references[11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014spa
dcterms.references[12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9spa
dcterms.references[13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.spa
dcterms.references[14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4spa
dcterms.references[15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-Xspa
dcterms.references[16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011spa
dcterms.references[17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.072spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1840/2390spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttp://doi.org/10.17981/ingecuc.15.2.2019.05


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal