Show simple item record

dc.creatorFontan Bouzas, Angela
dc.creatorAlcántara-Carrió, Javier
dc.creatorAlbarracin, Silvia
dc.creatorEnes Baganha Baptista, Paulo Renato
dc.creatorSilva, Paulo
dc.creatorPortz, Luana
dc.creatorManzolli, Rogerio Portantiolo
dc.date.accessioned2020-01-16T14:13:42Z
dc.date.available2020-01-16T14:13:42Z
dc.date.issued2019-11-14
dc.identifier.issn2077-1312
dc.identifier.urihttp://hdl.handle.net/11323/5835
dc.description.abstractOn a cuspate sandy foreland, the cycle of beach erosion and recovery is driven by the bi-directional approaches of wave climates, which also determine its specific shape. This work describes the seasonal morphodynamics of the Maspalomas natural cuspate foreland over a period of six years. This area, located in the south of Gran Canaria Island, consists of two beaches with different shoreline orientation, Maspalomas Beach and El Inglés Beach, converging to La Bajeta Tip at the head of the foreland. Shoreline variability and three-dimensional beach changes were measuredandcoupledtowaveenergyandlongshorecurrents. Fromwaveanalysis,112stormevents were identified over the period in focus. These events most frequently came from the northeast and in summer, which is consistent with the strong northeasterly trade winds between April and September. However, the strongest storms from the southwest were found to be the main cause of intense shoreline retreats, of up to 100 and 200 m, at Maspalomas Beach and La Bajeta Tip, respectively. The Maspalomas Beach sector showed interannual variability, with a general trend of erosion, whereas La Bajeta Tip demonstrated faster beach recovery. In contrast, El Inglés Beach sector presented a stable shoreline, in spite of the occurrence of wave storms approaching from northeast or southwest. Consequently, results indicate that energetic waves play a significant role in shoreline dynamics and Maspalomas landform shape. Post-storm sand recovery processes do not only occur during calm periods, but also during energetic events. The findings of this study have improved the understanding of seasonal and multiannual cuspate foreland morphodynamics, setting the groundwork for a potential long-term evolution model of Maspalomas coast.spa
dc.language.isoengspa
dc.publisherJournal of Marine Science and Engineeringspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCoastspa
dc.subjectWave storm energyspa
dc.subjectShorelinespa
dc.subjectBeach erosionspa
dc.subjectBeach recoveryspa
dc.titleMultiannual shore morphodynamics of a cuspate foreland: Maspalomas (Gran Canaria, Canary Islands)spa
dc.typeArticlespa
dcterms.references2. McNinch, J.E.; Luettich, R.A. Physical processes around a cuspate foreland: Implications to the evolution and long-term maintenance of a cape-associated shoal. Cont. Shelf Res. 2000, 20, 2367–2389. [CrossRef]spa
dcterms.references3. Russell, R.J.; Zenkovich, V.P.; Steers, J.A.; Fry, D.G. Processes of Coastal Development. Geogr. Rev. 1968, 58, 685. [CrossRef]spa
dcterms.references4. Coakley, J.P. The Origin and Evolution of a Complex Cuspate Foreland: Pointe-aux-Pins, Lake Erie, Ontario. Géogr. Phys. Quat. 2012, 43, 65. [CrossRef]spa
dcterms.references5. Brown, J.M.; Phelps, J.J.C.; Barkwith, A.; Hurst, M.D.; Ellis, M.A.; Plater, A.J. The effectiveness of beach mega-nourishment, assessed over three management epochs. J. Environ. Manag. 2016, 184, 400–408. [CrossRef] [PubMed]spa
dcterms.references6. Ferreira, Ó. The role of storm groups in the erosion of sandy coasts. Earth Surf. Process. Landf. 2006, 31, 1058–1060. [CrossRef]spa
dcterms.references7. Callaghan, D.P.; Nielsen, P.; Short, A.; Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 2008, 55, 375–390. [CrossRef]spa
dcterms.references8. Karunarathna, H.; Pender, D.; Ranasinghe, R.; Short, A.D.; Reeve, D.E. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [CrossRef]spa
dcterms.references9. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [CrossRef]spa
dcterms.references10. Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [CrossRef]spa
dcterms.references11. Vousdoukas, M.I.; Almeida, L.P.M.; Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 2012, 37, 583–593. [CrossRef]spa
dcterms.references12. Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.P.; Brown, J.A.; MacMahan, J.H.M. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [CrossRef]spa
dcterms.references13. Corbella, S.; Stretch, D.D. Shoreline recovery from storms on the east coast of Southern Africa. Nat. Hazards Earth Syst. Sci. 2012, 12, 11–22. [CrossRef]spa
dcterms.references14. Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [CrossRef]spa
dcterms.references15. Almeida, L.P.; Vousdoukas, M.V.; Ferreira, Ó.; Rodrigues, B.A.; Matias, A. Thresholds for storm impacts on an exposed sandy coastal area in southern Portugal. Geomorphology 2012, 143–144, 3–12. [CrossRef]spa
dcterms.references16. Roberts, T.M.; Wang, P.; Puleo, J.A. Storm-driven cyclic beach morphodynamics of a mixed sand and gravel beach along the Mid-Atlantic Coast, USA. Mar. Geol. 2013, 346, 403–421. [CrossRef]spa
dcterms.references17. Sénéchal, N.; Gouriou, T.; Castelle, B.; Parisot, J.P.; Capo, S.; Bujan, S.; Howa, H. Morphodynamic response of a meso- to macro-tidal intermediate beach based on a long-term data set. Geomorphology 2009, 107, 263–274. [CrossRef]spa
dcterms.references18. Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 2016, 41, 378–391. [CrossRef]spa
dcterms.references19. Scott, T.; Masselink, G.; O’Hare, T.; Saulter, A.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Mar. Geol. 2016, 382, 224–241. [CrossRef]spa
dcterms.references20. Baptista, P.; Coelho, C.; Pereira, C.; Bernardes, C.; Veloso-Gomes, F. Beach morphology and shoreline evolution: Monitoring and modelling medium-term responses (Portuguese NW coast study site). Coast. Eng. 2014, 84, 23–37. [CrossRef]spa
dcterms.references21. Clemmensen, L.B.; Bendixen, M.; Nielsen, L.; Jensen, S.; Schrøder, L. Coastal evolution of a cuspate foreland (Flakket, Anholt, Denmark) between 2006 and 2010. Bull. Geol. Soc. Denmark 2011, 59, 37–41.spa
dcterms.references22. Burningham, H.; French, J.R. Travelling forelands: Complexities in drift and migration patterns. J. Coast. Res. 2014, 70, 102–108. [CrossRef]spa
dcterms.references23. Hesp, P.A.; Ruz, M.H.; Hequette, A.; Marin, D.; Miot da Silva, G. Geomorphology and dynamics of a traveling cuspate foreland, Authie estuary, France. Geomorphology 2016, 254, 104–120. [CrossRef]spa
dcterms.references24. Xhardé, R.; Long, B.F.; Forbes, D.L. Short-Term Beach and Shoreface Evolution on a Cuspate Foreland Observed with Airborne Topographic and Bathymetric LIDAR. J. Coast. Res. 2011, 62, 50–61. [CrossRef]spa
dcterms.references25. Alonso; Alcántara-Carrió, J.; Cabrera, L. Tourist Resorts and their Impact on Beach Erosion at Sotavento Beaches, Fuerteventura, Spain. J. Coast. Res. 2002, 36, 1–7. [CrossRef]spa
dcterms.references26. Alonso, I.; Sanchez, I.; Cabrera, L.; Benavides, A.; Alcantara-Carrio, J.; Usera, J. Decadal evolution of a coastal dune field and adjacent beaches at North of Fuerteventura (Canary Islands, Spain). J. Coast. Res. 2006, 39, 198–203.spa
dcterms.references27. Hernández, L.; Alonso, I.; Sánchez-Pérez, I.; Alcántara-Carrió, J.; Montesdeoca, I. Shortage of Sediments in the Maspalomas Dune Field (Gran Canaria, Canary Islands) Deduced from Analysis of Aerial Photographs, Foraminiferal Content, and Sediment Transport Trends. J. Coast. Res. 2007, 234, 993–999. [CrossRef]spa
dcterms.references28. Hernández, L.; Alonso, I.; Ruiz, P.; Pérez-Chacón, E.; Suárez, C.; Alcántara-Carrió, J. Decadal Environmental Changes on the Dune Field of Maspalomas (Canary Islands): Evidences of an Erosive Tendency. Litoral 2002 Chang. Coast EUROCOAST/EUCC 2002, 293–297.spa
dcterms.references29. García-Romero, L.; Hernández-Cordero, A.I.; Fernández-Cabrera, E.; Peña-Alonso, C.; Hernández-Calvento, L.; Pérez-Chacón, E. Urban-touristic impacts on the aeolian sedimentary systems of the Canary Islands: Conflict between development and conservation. Island Stud. J. 2016, 11, 91–112.spa
dcterms.references30. Vallejo, I.; Hernández Calvento, L.; Ojeda, J.; Mayer, P.; Gómez Molina, A. Caracterización morfométrica y balance sedimentario en el sistema de dunas de Maspalomas (Gran Canaria) a partir de datos LIDAR. Rev. Soc. Geol. Esp. 2009, 22, 57–65.spa
dcterms.references31. Hernández-Cordero, A.I.; Hernández-Calvento, L.; Espino, E.P.C. Vegetation changes as an indicator of impact from tourist development in an arid transgressive coastal dune field. Land Use Policy 2017, 64, 479–491. [CrossRef]spa
dcterms.references32. Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G.; Hernández-Calvento, L. Quantifying the role of urbanization on airflow perturbations and dunefield evolution. Earths Future 2017, 5, 520–539. [CrossRef]spa
dcterms.references33. Fontán, A.; Alcántara-Carrió, J.; Correa, I.D. Combined beach - inner shelf erosion in short and medium term (Maspalomas, Canary Islands). Geol. Acta 2012, 10, 411–426.spa
dcterms.references34. Alonso, I.; Montesdeoca, I.; Vivares, A.; Alcántara-Carrió, J. Aproximación a la modelización de la dinámica litoral de las playas de El Inglés y Maspalomas (Gran Canaria). Vector Plus 2001, 18, 17–27.spa
dcterms.references35. Alcántara-Carrió, J.; Fontán, A. Factors controlling the morphodynamics and geomorphologic evolution of a cuspate foreland in a volcanic intraplate Island (Maspalomas, Canary Islands). J. Coast. Res. 2009, 56, 683–687.spa
dcterms.references36. Fontán Bouzas, A.; Alcántara-Carrió, J.; Montoya Montes, I.; Barranco Ojeda, A.; Albarracín, S.; Rey Díaz de Rada, J.; Rey Salgado, J. Distribution and thickness of sedimentary facies in the coastal dune, beach and nearshore sedimentary system at Maspalomas, Canary Islands. Geo Mar. Lett. 2013, 33, 117–127. [CrossRef]spa
dcterms.references37. Azorin-Molina, C.; Menendez, M.; McVicar, T.R.; Acevedo, A.; Vicente-Serrano, S.M.; Cuevas, E.; Minola, L.; Chen, D. Wind speed variability over the Canary Islands, 1948–2014: Focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim. Dyn. 2018, 50, 4061–4081. [CrossRef]spa
dcterms.references38. Sanjaume Saumell, E.; Gracia Prieto, F.J. Las Dunas en España; Sociedad Española de Geomorfología: Zaragoza, Spain, 2011; ISBN 9788461537808.spa
dcterms.references39. Máyer Suárez, P.; Pérez-Chacón Espino, E.; Cruz Avero, N.; Hernández-Calvento, L. Características del viento en el campo de dunas de Maspalomas (Gran Canaria, islas canarias, España). Nimbus Rev. Climatol. Meteorol. Y Paisaje 2012, 30, 381–397.spa
dcterms.references40. Yanes, A.; Marzol, M.V.; Romero, C. Characterization of sea storms along the coast of Tenerife, the Canary Islands. J. Coast. Res. 2006, 48, 124–128.spa
dcterms.references41. Dolan, R.; Davis, R. Coastal Storm Hazards. J. Coast. Res. 1994, SI 12, 103–114.spa
dcterms.references42. Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [CrossRef]spa
dcterms.references43. González, M.; Medina, R.; Gonzalez-Ondina, J.; Osorio, A.; Méndez, F.J.; García, E. An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Comput. Geosci. 2007, 33, 916–931. [CrossRef]spa
dcterms.references44. Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [CrossRef] 45. Lury, D.A.; Fisher, R.A. Statistical Methods for Research Workers. Statistician 1972, 21, 229. [CrossRef]spa
dcterms.references46. Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B. Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. J. Coast. Res. 2005, 213, 553–578. [CrossRef]spa
dcterms.references47. Senechal, N.; Coco, G.; Castelle, B.; Marieu, V. Storm impact on the seasonal shoreline dynamics of a mesoto macrotidal open sandy beach (Biscarrosse, France). Geomorphology 2015, 228, 448–461. [CrossRef]spa
dcterms.references48. Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [CrossRef]spa
dcterms.references49. Birmemeier, W.A. The effects of the 19 December 1977 coastal storm on beaches in North Carolina and New Jersey. Shore Beach 1979, 47, 7–15.spa
dcterms.references50. Kriebel, D.L. Beach Recovery Following Hurricane Elena. Coast. Sediments 1987, 1, 990–1005.spa
dcterms.references51. List, J.H.; Farris, A.S.; Sullivan, C. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Mar. Geol. 2006, 226, 261–279. [CrossRef]spa
dcterms.references52. Garnier, E.; Ciavola, P.; Spencer, T.; Ferreira, O.; Armaroli, C.; McIvor, A. Historical analysis of storm events: Case studies in France, England, Portugal and Italy. Coast. Eng. 2018, 134, 10–23. [CrossRef]spa
dcterms.references53. Davidson, M.A.; Turner, I.L.; Splinter, K.D.; Harley, M.D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 2017, 130, 14–25. [CrossRef]spa
dcterms.references54. Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal