Show simple item record

dc.contributor.authoramelec, viloriaspa
dc.contributor.authorCamargo ACUÑA, Genesis Yuliespa
dc.contributor.authorAlcázar Franco, Daniel Jesússpa
dc.contributor.authorHernández-Palma, Hugospa
dc.contributor.authorFuentes-Pacheco, Jorgespa
dc.contributor.authorPallares Rambal, Etelbertospa
dc.description.abstractData mining is a technique that allows to obtain patterns or models from the gathered data. This technique is applied in all kind of environments such as in the biological field, educational and financial applications, industry, police, and political processes. Within data mining there are several techniques, among which are the induction of rules and decision trees which, according to various studies carried out, are among the most used. This research analyzes decision tree data mining techniques and induction rules to integrate several of its algorithms into PostgreSQL database management system (DBMS). Through an experiment, it was found that when the algorithms are integrated to the manager, the response times and the results obtained are
dc.description.abstractLa minería de datos es una técnica que permite obtener patrones o modelos a partir de los datos recopilados. Esta técnica se aplica en todo tipo de entornos, como el campo biológico, las aplicaciones educativas y financieras, la industria, la policía y los procesos políticos. Dentro de la minería de datos existen varias técnicas, entre las cuales se encuentran la inducción de reglas y árboles de decisión que, según diversos estudios realizados, se encuentran entre las más utilizadas. Esta investigación analiza las técnicas de extracción de datos del árbol de decisiones y las reglas de inducción para integrar varios de sus algoritmos en el sistema de gestión de bases de datos PostgreSQL (DBMS). A través de un experimento, se descubrió que cuando los algoritmos se integran al administrador, los tiempos de respuesta y los resultados obtenidos son más
dc.publisherProcedia Computer Sciencespa
dc.subjectData miningspa
dc.subjectDatabase management systemspa
dc.subjectDecision-making treesspa
dc.subjectInduction rulesspa
dc.subjectProcesamiento de datosspa
dc.subjectSistema de administración de base de datosspa
dc.subjectÁrboles de toma de decisionesspa
dc.subjectReglas de inducciónspa
dc.titleIntegration of data mining techniques to postgreSQL database manager systemspa
dc.typeArtículo de revistaspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.referencesViloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer,
dc.relation.referencesViloria, A., Viviana Robayo, P.: Virtual network level of application composed IP networks connected with systems - (NETS Peer-to- Peer). Indian J. Sci. Technol. (2016). ISSN
dc.relation.referencesBalaguera MI., Vargas MC., Lis-Gutierrez JP., Viloria A., Malagón L.E. (2018) Architecture of an Object-Oriented Modeling Framework for Human Occupation. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer,
dc.relation.referencesFairley, R.E., “Recent advances in software estimation techniques”, Proceedings of the 14th international conference on Software engineering, Melbourne, Australia, 1992, pp.382 –
dc.relation.referencesWalkerden, F. y Jeffery, D., “Software cost estimation: A review of models, process, and practice”, Advances in Computers, Vol. 44, 1997, pp.
dc.relation.referencesBoehm, B., Abts, C. y Chulani, S., “Software development cost estimation approaches-a survey”, Annals of Software Engineering 10, 2000, pp. 177-205spa
dc.relation.referencesWieczorek, I. y Briand, L., Resource estimation in software engineering, Technical Report, International Software Engineering Research Network,
dc.relation.referencesPiotrowski, A.P., 2017. Review of Differential Evolution population size. Swarm Evol. Comput. 32, 1–24.
dc.relation.referencesKaya, I., 2009. A genetic algorithm approach to determine the sample size for attribute control charts. Inf. Sci. (Ny). 179, 1552– 1566.
dc.relation.referencesGaitán-Angulo M, Jairo Enrique Santander Abril, Amelec Viloria, Julio Mojica Herazo, Pedro Hernández Malpica, Jairo Luis Martínez Ventura, Lissette Hernández-Fernández. (2018) Company Family, Innovation and Colombian Graphic Industry: A Bayesian Estimation of a Logistical Model. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer,
dc.relation.referencesAmelec, Viloria. "Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy." Advanced Science Letters 21.5 (2015):
dc.relation.referencesMAcQueen, J., 1967. Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab 1, 281–
dc.relation.referencesAbdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M., 2018. Inice: A New Approach for Identifyingspa
dc.title.translatedIntegración de técnicas de minería de datos al sistema de administrador de base de datos postgreSQLspa

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2783]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record
Except where otherwise noted, this item's license is described as