Mostrar el registro sencillo del ítem

dc.contributor.authorCanales, Faustospa
dc.contributor.authorJurasz, Jakubspa
dc.contributor.authorBeluco, Alexandrespa
dc.contributor.authorKies, Alexanderspa
dc.date.accessioned2020-01-17T22:23:28Z
dc.date.available2020-01-17T22:23:28Z
dc.date.issued2020-02-01
dc.identifier.urihttp://hdl.handle.net/11323/5871spa
dc.description.abstractRenewable energies are deployed worldwide to mitigate climate change and push power systems towards sustainability. However, the weather-dependent nature of renewable energy sources often hinders their integration to national grids. Combining different sources to profit from beneficial complementarity has often been proposed as a partial solution to overcome these issues. This paper introduces a novel method for quantifying total temporal energetic complementarity between three different variable renewable sources, based on well-known mathematical techniques: correlation coefficients and compromise programming. It has the major advantage of allowing the simultaneous assessment of partial and total complementarity. The method is employed to study the complementarity of wind, solar and hydro resources on different temporal scales in a region of Poland. Results show that timescale selection has a determinant impact on the total temporal complementarity.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectEnergetic complementarityspa
dc.subjectRenewable energyspa
dc.subjectHybrid power systemsspa
dc.subjectVariable renewablesspa
dc.subjectCompromise programmingspa
dc.subjectCorrelationspa
dc.titleAssessing temporal complementarity between three variable energy sources through correlation and compromise programmingspa
dc.typePre-Publicaciónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Bo Ming, Pan Liu, Shenglian Guo, Xiaoqi Zhang, Maoyuan Feng, and Xianxun Wang. Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long-and short-term operational decisions. Applied Energy, 204:432–445, 2017.spa
dc.relation.references[2] Hossein Safaei and David W Keith. How much bulk energy storage is needed to decarbonize electricity? Energy & Environmental Science, 8(12):3409–3417, 2015.spa
dc.relation.references[3] Hengxu Zhang, Yongji Cao, Yi Zhang, and Vladimir Terzija. Quantitative synergy assessment of regional wind-solar energy resources based on merra reanalysis data. Applied energy, 216:172–182, 2018.spa
dc.relation.references[4] Petar Gburcik, Verica Gburˇ cik, Milivoj Gavrilov, Vladimir Srdanoviˇ c, and Sreten Mastilovi´ c. Complementary´ regimes of solar and wind energy in serbia. Geographica Pannonica, (10):22–25, 2006.spa
dc.relation.references[5] Yi Li, Vassilios G Agelidis, and Yash Shrivastava. Wind-solar resource complementarity and its combined correlation with electricity load demand. In 2009 4th IEEE conference on Industrial electronics and applications, pages 3623–3628. IEEE, 2009.spa
dc.relation.references[6] V. Lazarov L. Stoyanov, G. Notton and M. Ezzat. Wind and solar energies production complementarity for various bulgarian sites. page 311–325, 2010.spa
dc.relation.references[7] Christina E Hoicka and Ian H Rowlands. Solar and wind resource complementarity: Advancing options for renewable electricity integration in ontario, canada. Renewable Energy, 36(1):97–107, 2011.spa
dc.relation.references[8] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro pv generating plants. Renewable Energy, 45:24–30, 2012.spa
dc.relation.references[9] A Beluco, PK Souza, and A Krenzinger. Influence of different degrees of complementarity of solar and hydro energy availability on the performance of hybrid hydro pv generating plants. energy and power engineering, 5, 332-342, 2013.spa
dc.relation.references[10] P De Jong, AS Sánchez, K Esquerre, Ricardo de Araújo Kalid, and Ednildo Andrade Torres. Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of brazil. Renewable and Sustainable Energy Reviews, 23:526–535, 2013.spa
dc.relation.references[11] DS Ramos, LAS Camargo, E Guarnier, and LT Witzler. Minimizing market risk by trading hydro-wind portfolio: a complementarity approach. In 2013 10th International Conference on the European Energy Market (EEM), pages 1–8. IEEE, 2013.spa
dc.relation.references[12] Allan Rodrigues Silva, Felipe Mendonca Pimenta, Arcilan Trevenzoli Assireu, and Maria Helena Constantino Spyrides. Complementarity of brazils hydro and offshore wind power. Renewable and Sustainable Energy Reviews, 56:413–427, 2016.spa
dc.relation.references[13] Johannes Schmidt, Rafael Cancella, and Amaro O Pereira Jr. An optimal mix of solar pv, wind and hydro power for a low-carbon electricity supply in brazil. Renewable Energy, 85:137–147, 2016.spa
dc.relation.references[14] Mauricio P Cantão, Marcelo R Bessa, Renê Bettega, Daniel HM Detzel, and João M Lima. Evaluation of hydrowind complementarity in the brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.spa
dc.relation.references[15] Michel Denault, Debbie Dupuis, and Sébastien Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.spa
dc.relation.references[16] Gilberto Pianezzola, Arno Krenzinger, and Fausto Alfredo Canales Vega. Complementarity maps of wind and solar energy resources for rio grande do sul, brazil. Energy and power engineering [recurso eletrônico].[Wuhan, China]. Vol. 9, no. 9 (2017), p. 489-504, 2017.spa
dc.relation.references[17] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157–2165, 2008.spa
dc.relation.references[18] Caroline de Oliveira Costa Souza Rosa, Kelly Costa, Eliane da Silva Christo, and Pâmela Braga Bertahone. Complementarity of hydro, photovoltaic, and wind power in rio de janeiro state. Sustainability, 9(7):1130, 2017.spa
dc.relation.references[19] Marcos Bagatini, Mariana G Benevit, Alexandre Beluco, and Alfonso Risso. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.spa
dc.relation.references[20] Alfonso Risso, Alexandre Beluco, and Rita Marques Alves. Complementarity roses evaluating spatial complementarity in time between energy resources. Energies, 11(7):1918, 2018.spa
dc.relation.references[21] F Monforti, T Huld, K Bódis, L Vitali, M D’isidoro, and R Lacal-Arántegui. Assessing complementarity of wind and solar resources for energy production in italy. a monte carlo approach. Renewable Energy, 63:576–586, 2014.spa
dc.relation.references[22] Surendra B Kunwar. Complementarity of wind, solar and hydro resources for combating seasonal power shortage in nepal. In World Sustainability Forum, 2014.spa
dc.relation.references[23] Baptiste Francois, Marco Borga, Jean-Dominique Creutin, Benoit Hingray, Damien Raynaud, and Julian-Friedrich Sauterleute. Complementarity between solar and hydro power: Sensitivity study to climate characteristics in northern-italy. Renewable energy, 86:543–553, 2016.spa
dc.relation.references[24] Ioannis Kougias, Sándor Szabó, Fabio Monforti-Ferrario, Thomas Huld, and Katalin Bódis. A methodology for optimization of the complementarity between small-hydropower plants and solar pv systems. Renewable Energy, 87:1023–1030, 2016.spa
dc.relation.references[25] AA Solomon, Daniel M Kammen, and D Callaway. Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Applied energy, 168:130–145, 2016.spa
dc.relation.references[26] B François, D Zoccatelli, and M Borga. Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods. Energy, 127:716–729, 2017.spa
dc.relation.references[27] Jakub Jurasz, Adam Piasecki, and Marcin Wdowikowski. Assessing temporal complementarity of solar, wind and hydrokinetic energy. In E3S web of conferences, volume 10, page 00032. EDP Sciences, 2016.spa
dc.relation.references[28] Lanjing Xu, Zhiwei Wang, and Yanfeng Liu. The spatial and temporal variation features of wind-sun complementarity in china. Energy Conversion and Management, 154:138–148, 2017.spa
dc.relation.references[29] Ashish Gulagi, Manish Ram, and Christian Breyer. Solar-wind complementarity with optimal storage and transmission in mitigating the monsoon effect in achieving a fully sustainable electricity system for india. In 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, pages 6–8, 2017.spa
dc.relation.references[30] Abhnil A Prasad, Robert A Taylor, and Merlinde Kay. Assessment of solar and wind resource synergy in australia. Applied Energy, 190:354–367, 2017.spa
dc.relation.references[31] Frederico A During Fo, Alexandre Beluco, Elton G Rossini, and José de Souza. Influence of time complementarity on energy storage through batteries in hydro pv hybrid energy system. Computational Water, Energy, and Environmental Engineering, 7(03):142, 2018.spa
dc.relation.references[32] Jakub Jurasz, Marcin Wdowikowski, Bartosz Kaz´mierczak, and Paweł Da˛bek. Temporal and spatial complementarity of wind and solar resources in lower silesia (poland). In E3S web of conferences, volume 22, page 00074. EDP Sciences, 2017.spa
dc.relation.references[33] Jakub Jurasz, Paweł B Da˛bek, Bartosz Kaz´mierczak, Alexander Kies, and Marcin Wdowikowski. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for lower silesia (poland). Energy, 161:183–192, 2018.spa
dc.relation.references[34] Jakub Jurasz, Alexandre Beluco, and Fausto A Canales. The impact of complementarity on power supply reliability of small scale hybrid energy systems. Energy, 161:737–743, 2018.spa
dc.relation.references[35] Jakub Jurasz and Jerzy Mikulik. Site selection for wind and solar parks based on resources temporal and spatial complementarity–mathematical modelling approach. Przegla˛d Elektrotechniczny, 93(7):86–91, 2017.spa
dc.relation.references[36] Maurel Aza-Gnandji, François Xavier Fifatin, A Hypolite J Hounnou, Frédéric Dubas, Didier Chamagne, Christophe Espanet, and Antoine Vianou. Complementarity between solar and wind energy potentials in benin republic. In Advanced Engineering Forum, volume 28, pages 128–138. Trans Tech Publ, 2018.spa
dc.relation.references[37] Jizhong Zhu, Xiaofu Xiong, and Peizheng Xuan. Dynamic economic dispatching strategy based on multi-timescale complementarity of various heterogeneous energy. DEStech Transactions on Environment, Energy and Earth Sciences, (appeec), 2018.spa
dc.relation.references[38] Yanmei Zhu, Shijun Chen, Weibin Huang, Li Wang, and Guangwen Ma. Complementary operational research for a hydro-wind-solar hybrid power system on the upper jinsha river. Journal of Renewable and Sustainable Energy, 10(4):043309, 2018.spa
dc.relation.references[39] Xinshuo Zhang, Guangwen Ma, Weibin Huang, Shijun Chen, and Shuai Zhang. Short-term optimal operation of a wind-pv-hydro complementary installation: Yalong river, sichuan province, china. Energies, 11(4):868, 2018.spa
dc.relation.references[40] Matthew R Shaner, Steven J Davis, Nathan S Lewis, and Ken Caldeira. Geophysical constraints on the reliability of solar and wind power in the united states. Energy & Environmental Science, 11(4):914–925, 2018.spa
dc.relation.references[41] Felipe Henao, Yeny Rodriguez, Juan Pablo Viteri, and Isaac Dyner. Optimising the insertion of renewables in the colombian power sector. Renewable Energy, 132:81–92, 2019.spa
dc.relation.references[42] B François, B Hingray, D Raynaud, M Borga, and JD Creutin. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy, 87:686–696, 2016.spa
dc.relation.references[43] Maria Krutova, Alexander Kies, Bruno U Schyska, and Lueder von Bremen. The smoothing effect for renewable resources in an afro-eurasian power grid. Advances in Science and Research, 14:253–260, 2017.spa
dc.relation.references[44] Mario Marcello Miglietta, Thomas Huld, and Fabio Monforti-Ferrario. Local complementarity of wind and solar energy resources over europe: an assessment study from a meteorological perspective. Journal of Applied Meteorology and Climatology, 56(1):217–234, 2017.spa
dc.relation.references[45] Sebastian Sterl, Stefan Liersch, Hagen Koch, Nicole PM van Lipzig, and Wim Thiery. A new approach for assessing synergies of solar and wind power: implications for west africa. Environmental Research Letters, 13(9):094009, 2018.spa
dc.relation.references[46] Lion Hirth and Simon Müller. System-friendly wind power: How advanced wind turbine design can increase the economic value of electricity generated through wind power. Energy Economics, 56:51–63, 2016.spa
dc.relation.references[47] Kabitri Chattopadhyay, Alexander Kies, Elke Lorenz, Lüder von Bremen, and Detlev Heinemann. The impact of different pv module configurations on storage and additional balancing needs for a fully renewable european power system. Renewable energy, 113:176–189, 2017.spa
dc.relation.references[48] Elizando M Borba and Renato M Brito. An index assessing the energetic complementarity in time between more than two energy resources. Energy and Power Engineering, 9(09):505, 2017.spa
dc.relation.references[49] Shuang Han, Lu-na Zhang, Yong-qian Liu, Hao Zhang, Jie Yan, Li Li, Xiao-hui Lei, and Xu Wang. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Applied Energy, 236:973–984, 2019.spa
dc.relation.references[50] René Carmona. Statistical analysis of financial data in R, volume 2. Springer, 2014.spa
dc.relation.references[51] Miguel A Vega-Sánchez, Paulina D Castañeda-Jiménez, Rafael Peña-Gallardo, Antonio Ruiz-Alonso, Jorge A Morales-Saldaña, and Elvia R Palacios-Hernández. Evaluation of complementarity of wind and solar energy resources over mexico using an image processing approach. In 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pages 1–5. IEEE, 2017.spa
dc.relation.references[52] Mark Gershon and Lucien Duckstein. Multiobjective approaches to river basin planning. Journal of Water Resources Planning and Management, 109(1):13–28, 1983.spa
dc.relation.references[53] Edeltrauda Helios-Rybicka, Agnieszka Hołda, and Elzbieta Jarosz. Monitoring and quality assessment of selected˙ physical and chemical parameters of the sola river system, south poland. Inzynieria˙ Srodowiska/Akademia´ Górniczo-Hutnicza im. S. Staszica w Krakowie, 10:45–58, 2005.spa
dc.relation.references[54] Global modeling and assimilation office (gmao). http://doi.org/10.5067/VJAFPLI1CSIV. Accessed: Oct14, 2018.spa
dc.relation.references[55] Copernicus atmosphere monitoring service products. http://www.soda-pro.com/web-services/radiati on/camsradiation-service. Accessed: 15-Nov-2018.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal