Show simple item record

dc.creatorBohórquez González, Kevin
dc.creatorPacheco, Emmanuel
dc.creatorGuzmán, Andrés
dc.creatorAvila Pereira, Yoleimy
dc.creatorCano Cuadro, Heidis
dc.creatorF. Valencia, Javier A.
dc.date.accessioned2020-01-30T22:30:29Z
dc.date.available2020-01-30T22:30:29Z
dc.date.issued2020
dc.identifier.issn2352-4928
dc.identifier.urihttp://hdl.handle.net/11323/5970
dc.description.abstractThe present study investigated the use of sludge ash from water treatment plants as supplementary cementing material, elaborating hydraulic mortars with different levels of cement replacement by sludge ash (10 wt% and 30 wt%) and different temperatures of calcination (600 °C and 800 °C). Characterization of sludge ash and mortars includes XRF, XRD, particle size distribution by laser diffraction, compressive strength, and SEM-EDS. The results show that SiO2, Al2O3, and Fe2O3 compose 90 % of the sludge ash, and it has potential pozzolanic activity. It is evidenced that there is a significant influence of the variable ratio of sludge ash:cement in the compressive strength of the mortar cubes over other variables. Overall, this study showed that the sludge ash could be considered as a viable and sustainable alternative for the construction sector. Despite the benefits of the suggested replacement, the presence of amorphous SiO2 requires a review of long-time chemical behavior.spa
dc.language.isoengspa
dc.publisherMaterials Today Communicationsspa
dc.relation.ispartofhttps://doi.org/10.1016/j.mtcomm.2020.100930spa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectSupplementary cementitious materialspa
dc.subjectSludge ashspa
dc.subjectCompressive strengthspa
dc.subjectCharacterizationspa
dc.subjectConstruction materialsspa
dc.titleUse of sludge ash from drinking water treatment plant in hydraulic mortarsspa
dc.typeArticlespa
dcterms.references[1] M. Smol, J. Kulczycka, A. Henclik, K. Gorazda, Z. Wzorek, The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy, J. Clean. Prod. 95 (2015) 45–54, https://doi.org/10.1016/j.jclepro.2015. 02.051.spa
dcterms.references[2] J.S. Gregg, R.J. Andres, G. Marland, China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production, Geophys. Res. Lett. 35 (2008), https://doi.org/10.1029/2007GL032887.spa
dcterms.references[3] G. Habert, Environmental impact of Portland cement production, Eco-Efficient Concrete, Elsevier, 2013, pp. 3–25, https://doi.org/10.1533/9780857098993.1.3.spa
dcterms.references[4] K.L. Scrivener, V.M. John, E.M. Gartner, Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement- Based Materials Industry, United Nations Environment Program, 2016 (Accessed September 17, 2019), http://spiral.imperial.ac.uk/handle/10044/1/51016.spa
dcterms.references[5] J.M. Franco de Carvalho, T.V. de Melo, W.C. Fontes, J.O. dos S. Batista, G.J. Brigolini, R.A.F. Peixoto, More eco-efficient concrete: an approach on optimization in the production and use of waste-based supplementary cementing materials, Constr. Build. Mater. 206 (2019) 397–409, https://doi.org/10.1016/j. conbuildmat.2019.02.054.spa
dcterms.references[6] S. Naamane, Z. Rais, M. Chaouch, Incorporation of wastewater sludge treated by water washout in cement, J. Mater. Environ. Sci. 5 (2014) 2515–2521.spa
dcterms.references[7] E. Kendir, E. Kentel, F.D. Sanin, Evaluation of heavy metals and associated health risks in a metropolitan wastewater treatment plant’s sludge for its land application, Hum. Ecol. Risk Assess. 21 (2015) 1631–1643, https://doi.org/10.1080/10807039. 2014.966590.spa
dcterms.references[8] A.K. Venkatesan, R.U. Halden, Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals, Sci. Rep. 4 (2015) 3731, https://doi.org/10.1038/srep03731.spa
dcterms.references[9] K. Bondarczuk, A. Markowicz, Z. Piotrowska-Seget, The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application, Environ. Int. 87 (2016) 49–55, https://doi.org/10.1016/j.envint.2015.11.011.spa
dcterms.references[10] N. Gupta, S.S. Gaurav, A. Kumar, Molecular basis of aluminium toxicity in plants: a review, AJPS 04 (2013) 21–37, https://doi.org/10.4236/ajps.2013.412A3004.spa
dcterms.references[11] C. Exley, Aluminum should now be considered a primary etiological factor in Alzheimer’s disease, ADR 1 (2017) 23–25, https://doi.org/10.3233/ADR-170010.spa
dcterms.references[12] M.A. Tantawy, Characterization and pozzolanic properties of calcined alum sludge, Mater. Res. Bull. 61 (2015) 415–421, https://doi.org/10.1016/j.materresbull.2014. 10.042.spa
dcterms.references[13] A.L.G. Gastaldini, M.F. Hengen, M.C.C. Gastaldini, F.D. do Amaral, M.B. Antolini, T. Coletto, The use of water treatment plant sludge ash as a mineral addition, Constr. Build. Mater. 94 (2015) 513–520, https://doi.org/10.1016/j.conbuildmat. 2015.07.038.spa
dcterms.references[14] S.E. Hagemann, A.L.G. Gastaldini, M. Cocco, S.L. Jahn, L.M. Terra, Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: technical and economic evaluation, J. Clean. Prod. 214 (2019) 916–926, https://doi.org/10.1016/j.jclepro.2018.12.324.spa
dcterms.references[15] J.J. de Oliveira Andrade, M.C. Wenzel, G.H. da Rocha, S.R. da Silva, Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate, J. Clean. Prod. 192 (2018) 159–168, https://doi.org/10.1016/j.jclepro. 2018.04.246.spa
dcterms.references[16] ICONTEC, NTC121 – Especificación de desempeño para cemento hidráulico, ICONTEC, 2017 (Accessed September 17, 2019), https://tienda.icontec.org/ producto/ntc121-2/.spa
dcterms.references[17] ASTM, C1157/C1157M - 17 Performance Specification for Hydraulic Cement, ASTM International, 2017, https://doi.org/10.1520/C1157_C1157M-17.spa
dcterms.references[18] ASTM, C778-17 Specification for Standard Sand, ASTM International, 2017, https://doi.org/10.1520/C0778-17.spa
dcterms.references[19] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Resolución 2115, (2007).spa
dcterms.references[20] D. Vouk, D. Nakic, N. Stirmer, C. Cheeseman, Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material, J. Mater. Cycles Waste Manage. 20 (2018) 1458–1467, https://doi.org/10.1007/ s10163-018-0707-8.spa
dcterms.references[21] S. Naamane, Z. Rais, M. Lachquar, M. Taleb, Characterization of calcined sewage sludge for its incorporation in cement, J. Mater. Environ. Sci. 5 (2014) 2212–2216.spa
dcterms.references[22] ASTM, C109/C109M - 16a Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens), ASTM International, 2016, https://doi.org/10.1520/C0109_C0109M-16A.spa
dcterms.references[23] M. Pérez-Carrión, F. Baeza-Brotons, J. Payá, J.M. Saval, E. Zornoza, M.V. Borrachero, P. Garcés, Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks, Mater. Construcc. 64 (2014) e002, https:// doi.org/10.3989/mc.2014.06312.spa
dcterms.references[24] ABNT NBR, 15895 Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado, ABNT NBR, n.d. https://www.normas. com.br/visualizar/abnt-nbr-nm/30128/abnt-nbr15895-materiais-pozolanicosdeterminacao- do-teor-de-hidroxido-de-calcio-fixado-metodo-chapelle-modificado (Accessed September 17, 2019).spa
dcterms.references[25] K. Scrivener, R. Snellings, B. Lothenbach, A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, 2018.spa
dcterms.references[26] W. Navidi, Statistics for Engineers and Scientists, 3 edition, McGraw-Hill Science/ Engineering/Math, New York, 2010.spa
dcterms.references[27] M. Raverdy, F. Brivot, A.M. Paillere, R. Dron, Appreciation de l’activite pouzzolanique des constituants secondaires, Paris, France (1980), pp. 36–41.spa
dcterms.references[28] T. Ahmad, K. Ahmad, M. Alam, Investigating calcined filter backwash solids as supplementary cementitious material for recycling in construction practices, Constr. Build. Mater. 175 (2018) 664–671, https://doi.org/10.1016/j.conbuildmat.2018. 04.227.spa
dcterms.references[29] D. Sánchez, Tecnologia del concreto y del mortero, 1st. edition, Bhandar Ediciones LTDA, Santa fé de Bogotá, 2013.spa
dcterms.references[30] ASTM, C618-19 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, 2019, https://doi.org/10.1520/ C0618-19.spa
dcterms.references[31] M. Gener Rizo, J.M. Alonso Lavernia, Influencia de la composición mineralógica de puzolanas naturales en las propiedades de los cementos con adiciones, Mater. construcc. 52 (2002) 73–77, https://doi.org/10.3989/mc.2002.v52.i267.327.spa
dcterms.references[32] V.S. Ramachandran, Concrete Admixtures Handbook: Properties, Science and Technology, William Andrew, 1996.spa
dcterms.references[33] S. De Carvalho Gomes, J.L. Zhou, W. Li, G. Long, Progress in manufacture and properties of construction materials incorporating water treatment sludge: a review, Resources, Conserv. Recycl. 145 (2019) 148–159, https://doi.org/10.1016/j. resconrec.2019.02.032.spa
dcterms.references[34] F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, M.D.A. Thomas, Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res. 76 (2015) 130–146, https://doi.org/10.1016/j.cemconres. 2015.05.024.spa
dcterms.references[35] A. Tironi, M.A. Trezza, E. Irassar, A.N. Scian, Thermal activation of bentonites for their use as pozzolan, Revista de la Construccion. 11 (2012) 44–53.spa
dcterms.references[36] Mdel P. Durante Ingunza, G. Camarini, F. Murilo Silva da Costa, Performance of mortars with the addition of septic tank sludge ash, Constr. Build. Mater. 160 (2018) 308–315, https://doi.org/10.1016/j.conbuildmat.2017.11.053.spa
dcterms.references[37] K. Pospíšil, A. Frýbort, A. Kratochvíl, J. Macháčková, Scanning Electron microscopy method as a tool for the evaluation of selected materials microstructure, ToTS 1 (2008) 13–20, https://doi.org/10.5507/tots.2008.002.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal