dc.creator | Bohórquez González, Kevin | |
dc.creator | Pacheco, Emmanuel | |
dc.creator | Guzmán, Andrés | |
dc.creator | Avila Pereira, Yoleimy | |
dc.creator | Cano Cuadro, Heidis | |
dc.creator | F. Valencia, Javier A. | |
dc.date.accessioned | 2020-01-30T22:30:29Z | |
dc.date.available | 2020-01-30T22:30:29Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 2352-4928 | |
dc.identifier.uri | http://hdl.handle.net/11323/5970 | |
dc.description.abstract | The present study investigated the use of sludge ash from water treatment plants as supplementary cementing material, elaborating hydraulic mortars with different levels of cement replacement by sludge ash (10 wt% and 30 wt%) and different temperatures of calcination (600 °C and 800 °C). Characterization of sludge ash and mortars includes XRF, XRD, particle size distribution by laser diffraction, compressive strength, and SEM-EDS. The results show that SiO2, Al2O3, and Fe2O3 compose 90 % of the sludge ash, and it has potential pozzolanic activity. It is evidenced that there is a significant influence of the variable ratio of sludge ash:cement in the compressive strength of the mortar cubes over other variables. Overall, this study showed that the sludge ash could be considered as a viable and sustainable alternative for the construction sector. Despite the benefits of the suggested replacement, the presence of amorphous SiO2 requires a review of long-time chemical behavior. | spa |
dc.language.iso | eng | spa |
dc.publisher | Materials Today Communications | spa |
dc.relation.ispartof | https://doi.org/10.1016/j.mtcomm.2020.100930 | spa |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | Supplementary cementitious material | spa |
dc.subject | Sludge ash | spa |
dc.subject | Compressive strength | spa |
dc.subject | Characterization | spa |
dc.subject | Construction materials | spa |
dc.title | Use of sludge ash from drinking water treatment plant in hydraulic mortars | spa |
dc.type | Article | spa |
dcterms.references | [1] M. Smol, J. Kulczycka, A. Henclik, K. Gorazda, Z. Wzorek, The possible use of
sewage sludge ash (SSA) in the construction industry as a way towards a circular
economy, J. Clean. Prod. 95 (2015) 45–54, https://doi.org/10.1016/j.jclepro.2015.
02.051. | spa |
dcterms.references | [2] J.S. Gregg, R.J. Andres, G. Marland, China: emissions pattern of the world leader in
CO2 emissions from fossil fuel consumption and cement production, Geophys. Res.
Lett. 35 (2008), https://doi.org/10.1029/2007GL032887. | spa |
dcterms.references | [3] G. Habert, Environmental impact of Portland cement production, Eco-Efficient
Concrete, Elsevier, 2013, pp. 3–25, https://doi.org/10.1533/9780857098993.1.3. | spa |
dcterms.references | [4] K.L. Scrivener, V.M. John, E.M. Gartner, Eco-Efficient Cements: Potential
Economically Viable Solutions for a low-CO2 Cement- Based Materials Industry,
United Nations Environment Program, 2016 (Accessed September 17, 2019),
http://spiral.imperial.ac.uk/handle/10044/1/51016. | spa |
dcterms.references | [5] J.M. Franco de Carvalho, T.V. de Melo, W.C. Fontes, J.O. dos S. Batista,
G.J. Brigolini, R.A.F. Peixoto, More eco-efficient concrete: an approach on optimization
in the production and use of waste-based supplementary cementing materials,
Constr. Build. Mater. 206 (2019) 397–409, https://doi.org/10.1016/j.
conbuildmat.2019.02.054. | spa |
dcterms.references | [6] S. Naamane, Z. Rais, M. Chaouch, Incorporation of wastewater sludge treated by
water washout in cement, J. Mater. Environ. Sci. 5 (2014) 2515–2521. | spa |
dcterms.references | [7] E. Kendir, E. Kentel, F.D. Sanin, Evaluation of heavy metals and associated health
risks in a metropolitan wastewater treatment plant’s sludge for its land application,
Hum. Ecol. Risk Assess. 21 (2015) 1631–1643, https://doi.org/10.1080/10807039.
2014.966590. | spa |
dcterms.references | [8] A.K. Venkatesan, R.U. Halden, Wastewater treatment plants as chemical observatories
to forecast ecological and human health risks of manmade chemicals,
Sci. Rep. 4 (2015) 3731, https://doi.org/10.1038/srep03731. | spa |
dcterms.references | [9] K. Bondarczuk, A. Markowicz, Z. Piotrowska-Seget, The urgent need for risk assessment
on the antibiotic resistance spread via sewage sludge land application,
Environ. Int. 87 (2016) 49–55, https://doi.org/10.1016/j.envint.2015.11.011. | spa |
dcterms.references | [10] N. Gupta, S.S. Gaurav, A. Kumar, Molecular basis of aluminium toxicity in plants: a
review, AJPS 04 (2013) 21–37, https://doi.org/10.4236/ajps.2013.412A3004. | spa |
dcterms.references | [11] C. Exley, Aluminum should now be considered a primary etiological factor in
Alzheimer’s disease, ADR 1 (2017) 23–25, https://doi.org/10.3233/ADR-170010. | spa |
dcterms.references | [12] M.A. Tantawy, Characterization and pozzolanic properties of calcined alum sludge,
Mater. Res. Bull. 61 (2015) 415–421, https://doi.org/10.1016/j.materresbull.2014.
10.042. | spa |
dcterms.references | [13] A.L.G. Gastaldini, M.F. Hengen, M.C.C. Gastaldini, F.D. do Amaral, M.B. Antolini,
T. Coletto, The use of water treatment plant sludge ash as a mineral addition,
Constr. Build. Mater. 94 (2015) 513–520, https://doi.org/10.1016/j.conbuildmat.
2015.07.038. | spa |
dcterms.references | [14] S.E. Hagemann, A.L.G. Gastaldini, M. Cocco, S.L. Jahn, L.M. Terra, Synergic effects
of the substitution of Portland cement for water treatment plant sludge ash and
ground limestone: technical and economic evaluation, J. Clean. Prod. 214 (2019)
916–926, https://doi.org/10.1016/j.jclepro.2018.12.324. | spa |
dcterms.references | [15] J.J. de Oliveira Andrade, M.C. Wenzel, G.H. da Rocha, S.R. da Silva, Performance of
rendering mortars containing sludge from water treatment plants as fine recycled
aggregate, J. Clean. Prod. 192 (2018) 159–168, https://doi.org/10.1016/j.jclepro.
2018.04.246. | spa |
dcterms.references | [16] ICONTEC, NTC121 – Especificación de desempeño para cemento hidráulico,
ICONTEC, 2017 (Accessed September 17, 2019), https://tienda.icontec.org/
producto/ntc121-2/. | spa |
dcterms.references | [17] ASTM, C1157/C1157M - 17 Performance Specification for Hydraulic Cement,
ASTM International, 2017, https://doi.org/10.1520/C1157_C1157M-17. | spa |
dcterms.references | [18] ASTM, C778-17 Specification for Standard Sand, ASTM International, 2017,
https://doi.org/10.1520/C0778-17. | spa |
dcterms.references | [19] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Resolución 2115, (2007). | spa |
dcterms.references | [20] D. Vouk, D. Nakic, N. Stirmer, C. Cheeseman, Influence of combustion temperature
on the performance of sewage sludge ash as a supplementary cementitious material,
J. Mater. Cycles Waste Manage. 20 (2018) 1458–1467, https://doi.org/10.1007/
s10163-018-0707-8. | spa |
dcterms.references | [21] S. Naamane, Z. Rais, M. Lachquar, M. Taleb, Characterization of calcined sewage
sludge for its incorporation in cement, J. Mater. Environ. Sci. 5 (2014) 2212–2216. | spa |
dcterms.references | [22] ASTM, C109/C109M - 16a Test Method for Compressive Strength of Hydraulic
Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens), ASTM International,
2016, https://doi.org/10.1520/C0109_C0109M-16A. | spa |
dcterms.references | [23] M. Pérez-Carrión, F. Baeza-Brotons, J. Payá, J.M. Saval, E. Zornoza,
M.V. Borrachero, P. Garcés, Potential use of sewage sludge ash (SSA) as a cement
replacement in precast concrete blocks, Mater. Construcc. 64 (2014) e002, https://
doi.org/10.3989/mc.2014.06312. | spa |
dcterms.references | [24] ABNT NBR, 15895 Materiais pozolânicos – Determinação do teor de hidróxido de
cálcio fixado – Método Chapelle modificado, ABNT NBR, n.d. https://www.normas.
com.br/visualizar/abnt-nbr-nm/30128/abnt-nbr15895-materiais-pozolanicosdeterminacao-
do-teor-de-hidroxido-de-calcio-fixado-metodo-chapelle-modificado
(Accessed September 17, 2019). | spa |
dcterms.references | [25] K. Scrivener, R. Snellings, B. Lothenbach, A Practical Guide to Microstructural
Analysis of Cementitious Materials, CRC Press, 2018. | spa |
dcterms.references | [26] W. Navidi, Statistics for Engineers and Scientists, 3 edition, McGraw-Hill Science/
Engineering/Math, New York, 2010. | spa |
dcterms.references | [27] M. Raverdy, F. Brivot, A.M. Paillere, R. Dron, Appreciation de l’activite pouzzolanique
des constituants secondaires, Paris, France (1980), pp. 36–41. | spa |
dcterms.references | [28] T. Ahmad, K. Ahmad, M. Alam, Investigating calcined filter backwash solids as
supplementary cementitious material for recycling in construction practices, Constr.
Build. Mater. 175 (2018) 664–671, https://doi.org/10.1016/j.conbuildmat.2018.
04.227. | spa |
dcterms.references | [29] D. Sánchez, Tecnologia del concreto y del mortero, 1st. edition, Bhandar Ediciones
LTDA, Santa fé de Bogotá, 2013. | spa |
dcterms.references | [30] ASTM, C618-19 Specification for Coal Fly Ash and Raw or Calcined Natural
Pozzolan for Use in Concrete, ASTM International, 2019, https://doi.org/10.1520/
C0618-19. | spa |
dcterms.references | [31] M. Gener Rizo, J.M. Alonso Lavernia, Influencia de la composición mineralógica de
puzolanas naturales en las propiedades de los cementos con adiciones, Mater.
construcc. 52 (2002) 73–77, https://doi.org/10.3989/mc.2002.v52.i267.327. | spa |
dcterms.references | [32] V.S. Ramachandran, Concrete Admixtures Handbook: Properties, Science and
Technology, William Andrew, 1996. | spa |
dcterms.references | [33] S. De Carvalho Gomes, J.L. Zhou, W. Li, G. Long, Progress in manufacture and
properties of construction materials incorporating water treatment sludge: a review,
Resources, Conserv. Recycl. 145 (2019) 148–159, https://doi.org/10.1016/j.
resconrec.2019.02.032. | spa |
dcterms.references | [34] F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, M.D.A. Thomas, Alkali–silica
reaction: current understanding of the reaction mechanisms and the knowledge
gaps, Cem. Concr. Res. 76 (2015) 130–146, https://doi.org/10.1016/j.cemconres.
2015.05.024. | spa |
dcterms.references | [35] A. Tironi, M.A. Trezza, E. Irassar, A.N. Scian, Thermal activation of bentonites for
their use as pozzolan, Revista de la Construccion. 11 (2012) 44–53. | spa |
dcterms.references | [36] Mdel P. Durante Ingunza, G. Camarini, F. Murilo Silva da Costa, Performance of
mortars with the addition of septic tank sludge ash, Constr. Build. Mater. 160
(2018) 308–315, https://doi.org/10.1016/j.conbuildmat.2017.11.053. | spa |
dcterms.references | [37] K. Pospíšil, A. Frýbort, A. Kratochvíl, J. Macháčková, Scanning Electron microscopy
method as a tool for the evaluation of selected materials microstructure, ToTS 1
(2008) 13–20, https://doi.org/10.5507/tots.2008.002. | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |