Show simple item record

dc.creatorManica, Gustavo Carniel
dc.creatorLonghi Bolina, Fabrício
dc.creatorFonseca Tutikian, Bernardo
dc.creatorSilva Oliveira, Marcos Leandro
dc.creatorAnderson Moreira, Michael
dc.description.abstractWhen reinforced concrete elements are subjected to high temperatures, such as in a fire, they are susceptible to physical and chemical changes that cause spalling, thereby undermining their performance under such conditions. It is known that the age and the internal moisture content of concrete are factors that contribute to this event, but the intensity of spalling is not yet a consensus. This study aimed to assess the influence of age and internal moisture on the performance of concrete walls at high temperatures. Therefore, 6 real-scale walls were built with dimensions of 3.15 × 3.00 m, with the same composition of concrete, for tests in a vertical furnace under the ISO 834 curve, for ages of 7, 14, 28, 56, 84 and 830 days. Moisture was measured as per the electrical resistivity of concrete. It was noted that walls with ages above 84 days showed no spalling whatsoever, due to the internal moisture of concrete. The most severe spalling took place at 14 days, thus evidencing that pore interconnectivity and hydrated cement crystallization can contribute as
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceJournal of Materials Research and Technologyspa
dc.subjectReinforced concretespa
dc.subjectFire resistancespa
dc.subjectNon-load bearing wall systemspa
dc.titleInfluence of curing time on the fire performance of solid reinforced concrete platesspa
dcterms.references[1] Robert F, Colina H, Debicki G. A durabilidade do concreto mediante ao fogo. In: Ollivier J-P, Vichot A, editors. Durabilidade Do Concreto. 1 ed São Paulo: IBRACON; 2014. p. 509–
dcterms.references[2] Khoury GA. Effect of fire on concrete and concrete structures. Progress in structural engineering and materials, Vol. 2 ed. John Wiley & Sons; 2001. p. 429–
dcterms.references[3] Fu Y, Li L. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater Struct 2011;44(1):361–
dcterms.references[4] Zheng WZ, Hou XM, Shi DS, Xu MX. Experimental study on concrete spalling in prestressed slabs subjected to fire. Fire Safety J 2010;45(5):283–
dcterms.references[5] Hou Xiaomeng, Kodur VKR, Zheng Wenzhong. Factors governing the fire response of bonded prestressed concrete continuous beams. Mater Struct 2015;48(9): 2885–
dcterms.references[6] Jansson R. Fire spalling of concrete: theoretical and experimental studies. [Civil Engineering PhD]. Stockholm: KTH Vetenskap Och Konst;
dcterms.references[7] Fernandes B, Gil AM, Bolina FL, Tutikian BF. Thermal damage evaluation of full scale concrete columns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín) 2018;85:123–
dcterms.references[8] Wang G, et al. Fire safety provisions for aged concrete building structures. Procedia Eng 2013;62:629–
dcterms.references[9] Lataste JF. Evaluation non destructive de l’état d’endommagement des ouvrages en béton armé par mesure de résistivité électrique. [Civil Engineering PhD]. Université de Bordeaux;
dcterms.references[10] Plooy Rdu, Dérobert X, Villain G, PalmaLopes S. Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int 2013;54:27–
dcterms.references[11] Morita T, et al. An experimental study on spalling of high strength concrete elements under fire attack. Fire Safety Sci 2000;6:855–
dcterms.references[12] Kalifa P, Menneteau FD, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement Concrete Res 2000;30(12):1915–
dcterms.references[13] Costa CN. Dimensionamento de vigas de concreto armado em situac¸ão de incêndio. [Civil Engineering PhD]. São Paulo: Polytechnic School, Universidade de São Paulo;
dcterms.references[14] Pan Z, Sanjayan JG, Kong DLY. Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Const Building Mater 2012;36:365–
dcterms.references[15] Ehrenbring HZ, Quinino U, Oliveira LS, Tutikian BF. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct Concr 2019;20:1064–75,
dcterms.references[16] Pacheco F, Souza R, Christ R, Rocha C, Silva L, Tutikian BF. Determination of volume and distribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Struct Conc 2018;19:1419–27,
dcterms.references[17] Fédération Internationale. Du Betón (fib), Fire design of concrete structures – materials, structures and modeling – state-of-art report. Lausanne: Bulletin d’information 38; 2007. p.
dcterms.references[18] Neville AM. Propriedades do concreto. 523p. 5.eD. Porto Alegre: Bookman;
dcterms.references[19] Polder RB. Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation. Const Building Mater 2001;15:125–
dcterms.references[20] International Organization for Standardization (ISO). Fire-resistance tests – elements of building construction – part 1: general requirements, ISO 834;
dcterms.references[21] Associac¸ão Brasileira de Normas Técnicas (ABNT). Paredes divisórias sem func¸ão estrutural - determinac¸ão da resistência ao fogo: método de ensaio, NBR 10636;
dcterms.references[22] ASTM E119-18a. Standard test methods for fire tests of building construction and materials. West Conshohocken, PA: ASTM International; 2018.
dcterms.references[23] Australian Standard, Sidney AS 1530: methods for fire tests on building materials, components and structures;
dcterms.references[24] British Standard, London BS 476-3: fire tests on building materials and structures. Classification and method of test for external fire exposure to roofs;
dcterms.references[25] Santos L. Avaliac¸ão da resistividade elétrica do concreto como parâmetro para a previsão da iniciac¸ão da corrosão induzida por cloretos em estruturas de concreto. [M.SC. dissertation]. Brasília: Civil and Environmental Engineering Department, Universidade de Brasília;
dcterms.references[26] Rigão AO. Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. Santa Maria, 2012. [M.Sc. dissertation]. Santa Maria: Civil and Environmental Engineering Graduate Program, Universidade Federal de Santa Maria;
dcterms.references[27] Gil A, Pacheco F, Christ R, Bolina FL, Khayat KH, Tutikian BF. Comparative study of concrete panels’ fire resistance. Aci Mater J 2017;114:755–
dcterms.references[28] Rosemann F. Resistência ao fogo de paredes de alvenaria estrutural de blocos cerâmicos pelo critério de isolamento térmico. [M.Sc. dissertation]. Florianópolis: Civil Engineering Graduate Program, Universidade Federal de Santa Catarina;
dcterms.references[29] Shekarchi M, Tadayon M, Chini M, Hoseini M, Alizadeh R, Ghods P, et al. Predicting chloride penetration into concrete containing silica fume, with measuring the electrical resistivity of concrete. In: 4th International Conference on Concrete Under Severe Conditions. CONSEC’04. Proceedings of the 4th CONSEC Congress.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal