Show simple item record


dc.creatorPedroza Niño, Emmanuel
dc.creatorLópez-Silva, Luz S
dc.creatorPedroza Niño, María J
dc.creatorPérez Calvo, Daniela R
dc.creatorGonzález Muñoz, Kevin A
dc.creatorFLOREZ- DONADO, JENNIFER
dc.creatorTorres-Salazar, Prince Luz
dc.date.accessioned2020-02-21T13:57:01Z
dc.date.available2020-02-21T13:57:01Z
dc.date.issued2020-02-13
dc.identifier.issn0798 1015
dc.identifier.urihttp://hdl.handle.net/11323/6048
dc.description.abstractThe present study evaluates the contribution of teaching from problem solving to metacognitive processes (Analysis, Planning, Local Monitoring and Global Monitoring) problem solving. The sample consisted of 41 second grade students from a public school in the department of Atlántico (Colombia). Observation was used as the main technique through video recordings of the classes, in addition the Teaching Practice Observation Format and a Semistructured Flexible Interview were used. The participants were selected by means of a nonprobabilistic sampling of intentional type. Regarding the results, the average scores in the metacognitive processes were examined, as well as their relationship at the bivariate level (Pearson's correlation) with the success in solving quantitative reasoning problems. Finally, the predictive variables of success were examined and 43.7% of the Local Monitoring variance was explained by practice at the Start of class and 39.4% of the Global Monitoring variance was explained by practice at Class Closing. . The results obtained in relation to the practice in the classroom are discussed and a series of final recommendations are suggested that contribute to the success in solving mathematical problems to make decisions directed towards the improvement of the curricular processes.spa
dc.description.abstractEl presente estudio evalúa la contribución de la enseñanza desde la resolución de problemas a los procesos Metacognitivos (Análisis, Planeación, Monitoreo Local y Monitoreo Global) de resolución de problemas. La muestra estuvo conformada por 41 estudiantes de segundo grado de un colegio público del departamento del Atlántico (Colombia). Se empleó la observación como técnica principal mediante videograbaciones de las clases, además se empleó el Formato de Observación de la Práctica Docente y se hizo una Entrevista Flexible Semiestructurada. Los participantes fueron seleccionados mediante un muestreo no probabilístico de tipo intencional. Respecto a los resultados, se examinaron las puntuaciones medias en los procesos Metacognitivos, así como su relación a nivel bivariado (correlación de Pearson) con el éxito en la resolución de problemas de razonamiento cuantitativo. Finalmente, se examinaron las variables predictoras del éxito y se comprobó el 43.7% de la varianza de Monitoreo Local fue explicada por la práctica al Inicio de clase y el 39.4% de la varianza de Monitoreo Global fue explicada por la práctica al Cierre de la Clase. Se discuten los resultados obtenidos en relación con la práctica en el aula y se sugiere una serie de recomendaciones finales que contribuyan al éxito en resolución de problemas matemáticos para tomar decisiones direccionadas hacia el mejoramiento de los procesos curriculares.spa
dc.language.isospaspa
dc.publisherEspaciosspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectMetacognitionspa
dc.subjectProblem solvingspa
dc.subjectQuantitative reasoningspa
dc.subjectMathematicsspa
dc.subjectMetacogniciónspa
dc.subjectResolución de problemasspa
dc.subjectRazonamiento cuantitativospa
dc.subjectMatemáticasspa
dc.titleContribución de la enseñanza en los procesos metacognitivos y la resolución de problemas matemáticosspa
dc.title.alternativeContribution of teaching in metacognitive processes and the resolution of mathematical problemsspa
dc.typeArticlespa
dcterms.referencesCohors-Fresenborg, E., Kramer, S., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM Mathematics Education, 42, 231 – 244. Doi:10.1007/s11858-010-0237-xspa
dcterms.referencesDe la Cruz, M., Fernández, I., & Martínez, J. (2006). Conocimientos y prácticas pedagógicas de los docentes en relación con la enseñanza de la resolución de problemas aritméticos (Tesis de Maestría). Universidad del Norte, Barranquilla.spa
dcterms.referencesDemircioglu, H., Argün, Z., & Bulut, S. (2010). A case study: assessment of preservice secondary mathematics teachers’ metacognitive behaviour in the problem-solving process. ZDM Mathematics Education, 42, 493 – 502. Doi:10.1007/s11858-010-0263-8spa
dcterms.referencesDepaepe, F., De Corte, E., & Verschaffel, L. (2010). Teachers’ metacognitive and heuristic approaches to word problem solving: analysis and impact on students’ beliefs and performance. ZDM Mathematics Education, 42, 205 – 218. Doi:10.1007/s11858-009-0221-5spa
dcterms.referencesDesoete, A. (2007). Evaluating and improving the mathematics teaching – learning process through metacognition. Electronic Journal of Research in Educational Psychology, 13, 705 – 730.spa
dcterms.referencesDu Toit, S., & Kotze, G. (2009). Metacognitive Strategies in the Teaching and Learning of Mathematics. Pythagoras, 70, 57 – 67.spa
dcterms.referencesEllerton, N., & Yimer, A. (2010). A five-phase model for mathematical problem solving: Identifying synergies in pre-service-teachers’ metacognitive and cognitive actions, ZDM Mathematics Education, 42, 245 – 261. Doi:10.1007/s11858-009-0223-3spa
dcterms.referencesFlavell, J. H. (1976). Metacognitive aspects of problem solving. En L. B. Resnick (Ed.) The nature of intelligence (pp. 231–235). Hillsdale, NJ: Erlbaum.spa
dcterms.referencesFlórez-Donado, J. P., López-Silva, L. S., Carmen de Luque, G., Torres-Salazar, P., De la OssaSierra, C., Sánchez-Fuentes, M. M., Melamed-Varela, E., Sharabeth, I. (2017). Mathematical thinking as a predicting factor in Academic Success. Comunicación presentada en International Conference on Education, Psychology, and Social Sciences, Tailandia. ISSN:2518-2498.spa
dcterms.referencesFlórez-Donado, J., Ossa-Sierra, J. C., Castro, A. M. D., Noreña, M. F., Sánchez-Fuentes, M. D. M., Rodríguez-Calderón, G. R., & Gonzalez, M. C. (2018). Depresión y ansiedad ante toma de decisiones, aislamiento existencial, muerte y carencia de sentido vital en religiosos y no religiosos. Revista Espacios, 39(05). Recuperado de https://www.revistaespacios.com/a18v39n05/a18v39n05p15.pdf.spa
dcterms.referencesGarofalo, J., & Lester Jr, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for research in mathematics education, 163-176.spa
dcterms.referencesHoffman, B., & Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving efficiency. Contemporary Educational Psychology, 33, 875 – 893.spa
dcterms.referencesJacobse, A. E., & Harskamp, E. G. (2009). Student-controlled metacognitive training for solving word problems in primary school mathematics. Educational Research and Evaluation, 15, 447 – 463.spa
dcterms.referencesKazemi, F., Reza Fadaee, M., & Bayat, S. (2010). A Subtle View to Metacognitive Aspect of Mathematical Problems Solving. Procedia Social and Behavioral Sciences, 8, 420 – 426. Doi:10.1016/j.sbspro.2010.12.058spa
dcterms.referencesKesici, S., Erdogan, A., & Özteke, H. I. (2011). Are the dimensions of metacognitive awareness differing in prediction of mathematics and geometry achievement? Procedia Social and Behavioral Sciences, 15, 2658 – 2662. DOI:10.1016/j.sbspro.2011.04.165spa
dcterms.referencesKramarski, B., Weisse, I., & Kololshi – Minsker, I. (2010). How can self-regulated learning support the problem solving of third-grade students with mathematics anxiety? ZDM Mathematics Education, 42, 179 – 193. Doi:10.1007/s11858-009-0202-8spa
dcterms.referencesLee, N.H., Yeo, D. J. S., & Hong, S. E. (2014). A metacognitive-based instruction for Primary Four students to approach non-routine mathematical word problems. ZDM Mathematics Education, 46, 465 – 480. Doi:10.1007/s11858-014-0599-6spa
dcterms.referencesLópez, L. (1992). Efectos del contexto y de la complejidad semántica en la presentación de problemas aritméticos para los procesos de resolución de problemas por estudiantes de quinto grado. Tesis doctoral, Universidad de Columbia, Nueva York, EE.UU.spa
dcterms.referencesLópez, L.S., González, R., Toro, C., & Arzuza, J. (2005). Formato de Observación de la Clase para Pensar, FOCPP. Documento interno. Universidad del Norte.spa
dcterms.referencesLópez, L.S., González, R., Toro, C., & Arzuza, J. (2004). Protocolo de entrevista flexible para la evaluación y desarrollo del pensamiento matemático en la Clase para Pensar, FOCPP. Documento interno. Universidad del Norte.spa
dcterms.referencesMevarech, Z. R., & Amrany, C. (2008). Inmediate and delayed effects of meta-cognitive instruction on regulation of cognition and mathematics achievement. Metacognition Learning, 3, 147 – 157. Doi:10.1007/s11409-008-9023-3spa
dcterms.referencesMoga, A. (2012). Metacognitive Training Effects on Students Mathematical Performance from Inclusive Classrooms (Tesis doctoral). Babeș-Bolyai University, Cluj – Napoca, Rumania.spa
dcterms.referencesMoghadam, A. F., & Khah Fard, M. M. M. M. (2011). Surveying the Effect of Metacognitive Education on the on the Mathematics Achievement of 1stGrade High Junior School Female Students in Educational District 5, Tehran City, 2009-10 Educational Year. Procedia - Social and Behavioral Sciences, 29, 1531 – 1540. Doi:10.1016/j.sbspro.2011.11.394spa
dcterms.referencesMontague, M., Krawec, J., Dietz, S., & Enders, C. (2014). The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle-School Students of Varying Ability. Journal of Educational Psychology, 106, 469 – 481. Doi: 10.1037/a0035176spa
dcterms.referencesOECD (2014). Resultados de PISA en foco: lo que los alumnos saben a los 15 añosde edad y lo que pueden hacer con lo que saben. Recuperado de http://www.oecd.org/pisa/keyfindings/PISA2012_Overview_ESP-FINAL.pdf el 27 de noviembre de 2017.spa
dcterms.referencesÖzsoy, G., & Ataman, A. (2009). The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education, 1, 68 – 83.spa
dcterms.referencesPennequin, V., Sorel, O., Nanty, I., & Fontaine, R. (2010). Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking & Reasoning, 16, 198 – 220. Doi: 10.1080/13546783.2010.509052spa
dcterms.referencesPolya, G. (2014). How to solve it: A new aspect of mathematical method. Princeton University press.spa
dcterms.referencesSamedi, M., & Davaii, M. (2012). A case study of the predicting power of cognitive, metacognitive and motivational strategies in girl students' achievements. Procedia - Social and Behavioral Sciences, 32, 380 – 384. Doi:10.1016/j.sbspro.2012.01.057spa
dcterms.referencesSánchez-Fuentes, M. M., Flórez-Donado, P. L., Herrera-Mendoza, K. M., Ossa-Sierra, J. C., De Castro, A. M., Rodríguez-Calderon, G. R., Mejía, E. A., Rebolledo, J. D. (2018). Satisfacción con la vida y su relación con la religión y la salud en estudiantes universitarios de Colombia. Revista Espacios, 39, 26-37. Recuperado de http://revistaespacios.com/a18v39n05/a18v39n05p26.pdf.spa
dcterms.referencesSchoenfeld, A. H. (1982). Expert and novice mathematical problem solving. Reporte final a la National Science Foundation Research in Science Educationspa
dcterms.referencesTorres-Salazar, P., & Melamed-Varela, E. (2016). Uso de T-PACK como estrategia de transferencia de conocimiento en las universidades. Docencia, Ciencia y Tecnología. (pp. 194-216) Cabimas, Venezuela. Fondo Editorial UNERMB.spa
dcterms.referencesVan der Stel, M., Veenman, M. V. J., Deelen, K., & Haenen, J. (2010). The increasing role of metacognitive skills in math: a cross-sectional study from a developmental perspective. ZDM Mathematics Education, 42, 219 – 229. Doi:10.1007/s11858-009-0224-2spa
dcterms.referencesZimmerman, B. J., & Ramdass, D. (2008). Correction Strategy Training on Middle School Students’ Self-Efficacy, Self-Evaluation, and Mathematics Division Learning. Journal of Advanced Academics, 20, 18 – 41.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal