Show simple item record

dc.creatorAgudelo-Castañeda, Dayana Milena
dc.creatorDe Paoli, Fabrício
dc.creatorMORGADO GAMERO, WENDY BEATRIZ
dc.creatorMendoza Hernandez, Martha
dc.creatorParody, Alexander
dc.creatorMaturana, Aymer
dc.creatorCalesso Teixeira, Elba
dc.date.accessioned2020-04-09T19:44:48Z
dc.date.available2020-04-09T19:44:48Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/6157
dc.description.abstractNO2 ambient concentrations were measured in a coastal Caribbean city. Barranquilla is a Caribbean city located in the North of Colombia that has approximately 1.200.000 inhabitants and possesses a warm, humid climate. In order to obtain the concentration of the contaminant in an adequate resolution, 137 passive diffusion tubes from Gradko© were installed. Diffusion passive tubes prepared with 20% TEA/water were located at the roadside between 1 and 5 m from the kerb edge. The sampling period was two weeks, from 3/16/2019 to 3/30/2019. Samples were analyzed on the UV CARY1 spectrophotometer by Gradko©. Results showed an average of 19.92 ±11.50 µg/m3 , with a maximum and minimum value of 70.27 and 0.57 µg/m3 , respectively. Spatial NO2 correlation with low traffic load was higher than with maximum traffic. The expected results include analyzing the areas of the city with high concentrations of this pollutant that exceed the WHO guidelines in six (6) points. Overall, the multiregression analysis is a very effective method to enrich the understanding of NO2 distributions. It can provide scientific evidence for the relationship between NO2 and traffic, beneficial for developing the targeted policies and measures to reduce NO2 pollution levels in hot spots. This research may subsidize knowledge to serve as a tool for environmental and health authorities.spa
dc.language.isoengspa
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectNO2spa
dc.subjectSpatial variabilityspa
dc.subjectRegression modelspa
dc.titleAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal cityspa
dc.typePreprintspa
dcterms.referencesAchakulwisut, P., Brauer, M., Hystad, P., Anenberg, S.C., 2019. Global, national, and urban burdens of pediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planet. Heal. 3, e166–e178. https://doi.org/10.1016/S25425196(19)30046-4spa
dcterms.referencesAdame, J.A., Serrano, E., Bolívar, J.P., de la Morena, B.A., 2010. On the tropospheric ozone variations in a coastal area of Southwestern Europe under a mesoscale circulation. J. Appl. Meteorol. Climatol. 49, 748–759. https://doi.org/10.1175/2009JAMC2097.1spa
dcterms.referencesCoughlin, J.G., Yu, Z., Elliott, E.M., 2017. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions. Rapid Commun. Mass Spectrom. 31, 1211–1220. https://doi.org/10.1002/rcm.7885spa
dcterms.referencesCyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Dimakopoulou, K., Eriksen, K., Galassi, C., Graulevičiene, R., Grivas, G., Gruzieva, O., Gustafsson, A.H., Hoffmann, B., Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., Madsen, C., Meliefste, K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., Oldenwening, M., Peters, A., Pontet, S., ProbstHensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., Tsai, M.Y., Vaskövi, É., Villani, S., Wang, M., Brunekreef, B., Hoek, G., 2012. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 62, 374–390. https://doi.org/10.1016/j.atmosenv.2012.07.080spa
dcterms.referencesFelix, E., Gidhagen, L., Alonso, M.F., Nahirny, E.P., Alves, B.L., Segersson, D., Amorim, J.H., 2019. Passive sampling as a feasible tool for mapping and model evaluation of the spatial distribution of nitrogen oxides in the city of Curitiba, Brazil. Air Qual. Atmos. Heal. 12, 837– 846. https://doi.org/10.1007/s11869-019-00701-zspa
dcterms.referencesGeddes, J.A., Martin, R. V., Boys, B.L., van Donkelaar, A., 2016. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289. https://doi.org/10.1289/ehp.1409567spa
dcterms.referencesKimbrough, S., Chris Owen, R., Snyder, M., Richmond-Bryant, J., 2017. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements. Atmos. Environ. 165, 23–34. https://doi.org/10.1016/j.atmosenv.2017.06.027spa
dcterms.referencesLanzafame, R., Monforte, P., Scandura Pier, F., 2016. Comparative Analyses of Urban Air Quality Monitoring Systems: Passive Sampling and Continuous Monitoring Stations. Energy Procedia 101, 321–328. https://doi.org/10.1016/j.egypro.2016.11.041 ul-Haq, Z., Tariq, S., Ali, M., Mahmood, K., Batool, S.A., Rana, A.D., 2014. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Pollut. Res. 5, 709–720. https://doi.org/10.5094/APR.2014.080spa
dcterms.referencesZhang, L., Lee, C.S., Zhang, R., Chen, L., 2017. Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2and SO2concentrations in Henan Province, China. Atmos. Environ. 154, 151–166. https://doi.org/10.1016/j.atmosenv.2016.11.067spa
dcterms.referencesIDEAM. Atlas climatológico de Colombia. http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlspa
dcterms.referencesBarranquilla, 2018. Alcaldía de Barranquilla. [WWW Document]. URL http://www.barranquilla.gov.co/index.php?option=com_content&view=article&id=27&Ite mid=118. (accessed 7.31.18).spa
dcterms.referencesMorgado Gamero W.B., Ramírez M.C., Parody A., Viloria A., López M.H.A., Kamatkar S.J. (2018) Concentrations and Size Distributions of Fungal Bioaerosols in a Municipal Landfill. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Chamspa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal