Mostrar el registro sencillo del ítem

dc.contributor.authorBarrozo Budes, Farid Antoniospa
dc.contributor.authorValencia Ochoa, Guillermospa
dc.contributor.authorObregon, Luis Guillermospa
dc.contributor.authorArango-Manrique, Adrianaspa
dc.contributor.authorNúñez Alvarez, José Ricardospa
dc.date.accessioned2020-04-13T15:15:01Z
dc.date.available2020-04-13T15:15:01Z
dc.date.issued2020-04-02
dc.identifier.issn1996-1073spa
dc.identifier.urihttps://hdl.handle.net/11323/6178spa
dc.description.abstractThe electrical sector in the Caribbean region of Colombia is currently facing problems that affect its reliability. Many thermo-electric plants are required to fill the gap and ensure energy supply. This paper thus proposes a hybrid renewable energy generation plant that could supply a percentage of the total energy demand and reduce the environmental impact of conventional energy generation. The hybrid plant works with a photovoltaic (PV) system and wind turbine systems, connected in parallel with the grid to supply a renewable fraction of the total energy demand. The investigation was conducted in three steps: the first stage determined locations where the energy system was able to take advantage of renewable sources, the second identified a location that could work more efficiently from an economic perspective, and finally, the third step estimated the number of PV solar panels and wind turbines required to guarantee optimal functioning for this location using, as a main method of calculation, the software HOMER pro® for hybrid optimization with multiple energy resources. The proposed system is expected to not only limit environmental impacts but also decrease total costs of electric grid consumption from thermoelectric plants. The simulations helped identify Puerto Bolivar, Colombia, as the location where the hybrid plant made the best use of non-conventional resources of energy. However, Rancho Grande was found to offer the system more efficiency, while generating a considerable amount of energy at the lowest possible cost. An optimal combination was also obtained—441 PV arrays and 3 wind turbines, resulting in a net present cost (NPC) of $11.8 million and low CO2 production of 244.1 tons per year.spa
dc.language.isoeng
dc.publisherEnergiesspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectSolar energyspa
dc.subjectWind energyspa
dc.subjectEnergy efficiencyspa
dc.subjectEnvironmental impactspa
dc.subjectEconomic evaluationspa
dc.subjectOn-grid systemspa
dc.subjectHOMER Pro softwarespa
dc.titleEnergy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-Grid System Using HOMER Pro®: A Case Study in Colombiaspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/en13071662spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. McCormick, R.L.; Tennant, C.J.; Hayes, R.R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C.A. Regulated emissions from biodiesel tested in heavy duty engines meeting 2004 emission standards. In Proceedings of the 2005 SAE Brasil Fuels & Lubricants Meeting, Rio De Janeiro, Brazil, 11–13 May 2005.spa
dc.relation.references2. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2.spa
dc.relation.references3. Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267.spa
dc.relation.references4. Boca, G.D.; Saraçlı, S. Environmental Education and Student’s Perception, for Sustainability. Sustainability 2019, 11, 1553.spa
dc.relation.references5. Noh, C.-H.; Kim, I.; Jang, W.-H.; Kim, C.-H. Recent Trends in Renewable Energy Resources for Power Generation in the Republic of Korea. Resources 2015, 4, 751–764.spa
dc.relation.references6. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017.spa
dc.relation.references7. Núñez, A.J.; Benítez, P.I.; Proenza, Y.R.; Vázquez, S.L.; Díaz, M.D. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Rev. Iberoam. Automática Inf. Ind. 2020, 17, 94–105.spa
dc.relation.references8. Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 2015, 81, 1–10.spa
dc.relation.references9. International Energy Agency. World Energy Outlook 2016; IEA Publications: Paris, France, 2016.spa
dc.relation.references10. Szymczak, P.D. Asia Pac Leads Global Solar Photovoltaic (PV) Market. 18 December 2018. Available online: https://oilandgaseurasia.com/2018/12/18/asia-pac-leads-global-solar-photovoltaic-pv-market/ (accessed on 30 December 2019).spa
dc.relation.references11. Fairley Peter. The Pros and Cons of the World´s Biggest Solar Park. 2020. Available online: https://spectrum.ieee.org/energy/renewables/the-pros-and-cons-of-the-worlds-biggest-solar-park (accessed on 21 December 2019).spa
dc.relation.references12. Moemken, J.; Reyers, M.; Feldmann, H.; Pinto, J. Future changes of wind speed and wind energy potentials in EURO-CORDEX ensemble simulations. J. Geophys. Res. Atmos. 2018, 123, 6373–6389.spa
dc.relation.references13. Valencia Ochoa, G.; Vanegas Chamorro, M.; Polo Jiménez, J. Análisis Estadístico de la Velocidad y Dirección Del Viento en la Región Caribe Colombiana con Enfasis en la Guajira; Sello Editorial Universidad Del Atlántico: Barranquilla, Colombia, 2016; p. 51.spa
dc.relation.references14. Valencia, G.; Nuñez, J.; Acevedo, C. Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy. Int. J. Energy Econ. Policy 2019, 9, 242–253.spa
dc.relation.references15. Ochoa, G.V.; Blanco, C.; Martinez, C.; Ramos, E. Fuzzy Adaptive Control Applied to a Hybrid ElectricPower Generation System (HEPGS). Indian J. Sci. Technol. 2017, 10, 1–9.spa
dc.relation.references16. Milanes Batista, C.M.; Planas, J.A.; Pelot, R.; Núñez, J.R. A new methodology incorporating public participation within Cuba's ICZM program. Ocean Coast. Manag. 2020, 186, 105101.spa
dc.relation.references17. Sinay, L.; Carter, R.W.B. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7.spa
dc.relation.references18. Boden, T.A.; Marland, G.; Andres, R.J. Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory; U.S. Department of Energy: Oak Ridge, TN, USA, 2017. Available online: https://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html (accessed on 26 October 2019).spa
dc.relation.references19. Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.spa
dc.relation.references20. HOMER Pro. Available online: https://www.homerenergy.com/products/pro/index.html (accessed on 29 July 2017).spa
dc.relation.references21. Valencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016.spa
dc.relation.references22. Valencia Ochoa, G.; Vanegas Chamorro, M.; Villicaña Ortiz, E. Atlas Solar de la Costa Caribe Colombiana; Sello Editorial Universidad Del Atlántico: Barranquilla, Colombia, 2016.spa
dc.relation.references23. Goldwind. Goldwind PMDD 1.5 MW Wind Turbine Brochure. 2017. Available online: https://www.goldwindamericas.com/sites/default/files/Goldwind%20Americas_Goldwind%201.5MW%2 0Brochure%20%282017%29_0.pdf (accessed on 2 February 2020).spa
dc.relation.references24. UPME. Escenarios de Oferta y Demanda de Hidrocarburos en Colombia; Ministerio de Minas y Energía: Bogota, Colombia, 2012. Available online: http://www.upme.gov.co/docs/publicaciones/2012/escenarios_oferta_demanda_hidrocarburos.pdf (accessed on 9 April 2018).spa
dc.relation.references25. Papoulis, A. Probability, Random Variables, and Stochastic Processes, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991.spa
dc.relation.references26. Jafari, A.A.; Zakerzadeh, H. Inference on the parameters of the Weibull distribution using records. SORT 2015, 39, 3–18.spa
dc.relation.references27. Jung, S.; Arda Vanli, O.; Kwon, S.-D. Wind energy potential assessment considering the uncertainties due to limited data. Appl. Energy 2013, 102, 1492–1503.spa
dc.relation.references28. Etghani, M.M.; Shojaeefard, M.H.; Khalkhali, A.; Akbari, M. A hybrid method of modified NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl. Therm. Eng. 2013, 59, 309–315.spa
dc.relation.references29. Ochoa, G.V.; Isaza-Roldan, C.; Duarte Forero, J. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317.spa
dc.relation.references30. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids. Appl. Sci. 2019, 9, 4526.spa
dc.relation.references31. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.spa
dc.relation.references32. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon2019, 5, e02700.spa
dc.relation.references33. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal