Mostrar el registro sencillo del ítem

dc.contributor.authorTorres, Lizethspa
dc.contributor.authorJiménez-Cabas, Javierspa
dc.contributor.authorGonzález, Omarspa
dc.contributor.authorMolina, Lázarospa
dc.contributor.authorLopez Estrada, Francisco Ronayspa
dc.date.accessioned2020-04-20T21:58:30Z
dc.date.available2020-04-20T21:58:30Z
dc.date.issued2020-03-05
dc.identifier.issn2077-1312spa
dc.identifier.urihttps://hdl.handle.net/11323/6226spa
dc.description.abstractThe purpose of this paper is to provide a structural review of the progress made on the detection and localization of leaks in pipelines by using approaches based on the Kalman filter. To the best of the author’s knowledge, this is the first review on the topic. In particular, it is the first to try to draw the attention of the leak detection community to the important contributions that use the Kalman filter as the core of a computational pipeline monitoring system. Without being exhaustive, the paper gathers the results from different research groups such that these are presented in a unified fashion. For this reason, a classification of the current approaches based on the Kalman filter is proposed. For each of the existing approaches within this classification, the basic concepts, theoretical results, and relations with the other procedures are discussed in detail. The review starts with a short summary of essential ideas about state observers. Then, a brief history of the use of the Kalman filter for diagnosing leaks is described by mentioning the most outstanding approaches. At last, brief discussions of some emerging research problems, such as the leak detection in pipelines transporting heavy oils; the main challenges; and some open issues are addressed.spa
dc.language.isoeng
dc.publisherJournal of Marine Science and Engineeringspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectLeak detectionspa
dc.subjectKalman filterspa
dc.subjectPipelinesspa
dc.titleKalman filters for leak diagnosis in pipelines: brief history and future researchspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/jmse8030173spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Drumond, G.P.; Pasqualino, I.P.; Pinheiro, B.C.; Estefen, S.F. Pipelines, risers and umbilicals failures: A literature review. Ocean Eng. 2018, 148, 412–425. [CrossRef]spa
dc.relation.references2. Bermúdez, J.R.; López-Estrada, F.R.; Besançon, G.; Valencia-Palomo, G.; Torres, L.; Hernández, H.R. Modeling and simulation of a hydraulic network for leak diagnosis. Math. Comput. Appl. 2018, 23, 70. [CrossRef]spa
dc.relation.references3. American Petroleum Institute. API RP 1130 (2007): Computational Pipeline Monitoring for Liquids; American Petroleum Institute: Washington, DC, USA, September 2007.spa
dc.relation.references4. Geiger, G.; Werner, T.; Matko, D. Leak detection and locating-a survey. In Proceedings of the PSIG Annual Meeting, Pipeline Simulation Interest Group, Bern, Switzerland, 15–17 October 2003.spa
dc.relation.references5. Besançon, G. Nonlinear Observers and Applications; Springer: Berlin, Germany, 2007; p. 224.spa
dc.relation.references6. Besançon, G. Observer tools for pipeline monitoring. In Modeling and Monitoring of Pipelines and Networks; Springer: Berlin, Germany, 2017; pp. 83–97.spa
dc.relation.references7. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 2019, 19, 2548. [CrossRef] [PubMed]spa
dc.relation.references8. Simon, D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theor. Appl. 2010, 4, 1303–1318. [CrossRef]spa
dc.relation.references9. Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: New York, NY, USA, 2009.spa
dc.relation.references10. Digernes, T. Real-Time Failure-Detection and Identification Applied to Supervision of Oil Transport in Pipelines. Model. Identif. Control 1980, 1, 39–49. [CrossRef]spa
dc.relation.references11. Benkherouf, A.; Allidina, A. Leak detection and location in gas pipelines. IEE Proc. D-Control Theory Appl. 1988, 135, 142–148. [CrossRef]spa
dc.relation.references12. Besançon, G.; Georges, D.; Begovich, O.; Verde, C.; Aldana, C. Direct observer design for leak detection and estimation in pipelines. In Proceedings of the 2007 European Control Conference (ECC), Kos, Greece, 2–5 July 2007; pp. 5666–5670.spa
dc.relation.references13. Geiger, I.G. Principles of leak detection. In Fundamentals of Leak Detection; KROHNE Oil and Gas: Reken, Germany, 2005.spa
dc.relation.references14. Emara-Shabaik, H.; Khulief, Y.; Hussaini, I. A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 2002, 216, 497–512. [CrossRef]spa
dc.relation.references15. Khulief, Y.; Emara-Shabaik, H. Laboratory investigation of a multiple-model state estimation scheme for detection and isolation of leaks in pipelines. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 2006, 220, 1–13. [CrossRef]spa
dc.relation.references16. Bai, L.; Yue, Q.; Li, H. Sub-sea Pipelines Leak Detection and Location Based on Fluid Transient and FDI. In Proceedings of the the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004.spa
dc.relation.references17. Doney, K. Leak Detection in Pipelines Using the Extended Kalman Filter and the Extended Boundary Approach. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 10 October 2007.spa
dc.relation.references18. Begovich, O.; Navarro, A.; Sanchez, E.N.; Besançon, G. Comparison of two detection algorithms for pipeline leaks. In Proceedings of the IEEE International Conference on Control Applications, CCA 2007, Singapore, 1–3 October 2007; pp. 777–782.spa
dc.relation.references19. Billmann, L.; Isermann, R. Leak detection methods for pipelines. Automatica 1987, 23, 381–385. [CrossRef]spa
dc.relation.references20. Verde, C. Multi-leak detection and isolation in fluid pipelines. Control Eng. Pract. 2001, 9, 673–682. [CrossRef]spa
dc.relation.references21. Chaudhry, M.H. Applied Hydraulic Transients; Van Nostrand Reinhold: New York, NY, USA, 1979.spa
dc.relation.references22. Verde, C.; Bornard, G.; Gentil, S. Isolability of multi-leaks in a pipeline. In Proceedings of the 4th MATHMOD, Vienna, Austria, 5–7 February 2003.spa
dc.relation.references23. Torres, L.; Besançon, G.; Georges, D. A collocation model for water-hammer dynamics with application to leak detection. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancún, Mexico, 9–11 December 2008; pp. 3890–3894.spa
dc.relation.references24. Torres, L.; Besançon, G.; Georges, D. Collocation modeling with experimental validation for pipeline dynamics and application to transient data estimations. In Proceedings of the European Control Conference, ECC’09, Budapest, Hungary, 23–26 August 2009.spa
dc.relation.references25. Dos Santos, P.L.; Azevedo-Perdicoúlis, T.; Ramos, J.; Jank, G.; de Carvalho, J.M.; Milhinhos, J. Gas pipelines LPV modelling and identification for leakage detection. In Proceedings of the American Control Conference (ACC2010), Baltimore, Maryland, USA, 30 June–2 July 2010; pp. 1211–1216.spa
dc.relation.references26. Navarro, A.; Begovich, O.; Besançon, G.; Dulhoste, J. Real-time leak isolation based on state estimation in a plastic pipeline. In Proceedings of the IEEE International Conference on Control Applications CCA 2011 , Denver, CO, USA, 28–30 September 2011; pp. 953–957.spa
dc.relation.references27. Colombo, A.F.; Karney, B.W. Energy and costs of leaky pipes: toward comprehensive picture. J. Water Resour. Plan. Manag. 2002, 128, 441–450. [CrossRef]spa
dc.relation.references28. Delgado-Aguiñaga, J.; Begovich, O.; Besançon, G. Varying-parameter modeling and extended Kalman filtering for reliable leak diagnosis under temperature variations. In Proceedings of the 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016 ; pp. 632–637.spa
dc.relation.references29. Verde, C.; Torres, L.; González, O. Decentralized scheme for leaks’ location in a branched pipeline. J. Loss Prev. Process Ind. 2016, 43, 18–28. [CrossRef]spa
dc.relation.references30. Delgado-Aguiñaga, J.A.; Begovich, O. Water Leak Diagnosis in Pressurized Pipelines: A Real Case Study. In Modeling and Monitoring of Pipelines and Networks; Springer: New York, NY, USA, 2017; pp. 235–262.spa
dc.relation.references31. Navarro, A.; Begovich, O.; Sánchez, J.; Besançon, G. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian J. Control 2017, 19, 255–265. [CrossRef]spa
dc.relation.references32. Santos-Ruiz, I.; Bermúdez, J.; López-Estrada, F.; Puig, V.; Torres, L.; Delgado-Aguiñaga, J. Online leak diagnosis in pipelines using an EKF-based and steady-state mixed approach. Control Eng. Pract. 2018, 81, 55–64. [CrossRef]spa
dc.relation.references33. Delgado-Aguiñaga, J.; Besançon, G. EKF-based leak diagnosis schemes for pipeline networks. IFAC-PapersOnLine 2018, 51, 723–729. [CrossRef]spa
dc.relation.references34. Liu, P.; Li, S.; Wang, Z. Multi-leak diagnosis and isolation in oil pipelines based on Unscented Kalman filter. In Proceedings of the 30th Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 2222–2227.spa
dc.relation.references35. Verde, C. Minimal order nonlinear observer for leak detection. J. Dyn. Syst. Meas. Control 2004, 126, 467–472. [CrossRef]spa
dc.relation.references36. Verde, C.; Visairo, N. Identificability of multi-leaks in a pipeline. In Proceedings of the American Control Conference (ACC), Boston, MA, USA, 30 June–2 July 2004; Volume 5, pp. 4378–4383.spa
dc.relation.references37. Gong, J.; Cai, J.; Li, X.; Song, S. Research on state estimation of oil pipeline considering adaptive extended Kalman filtering. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 1294–1298.spa
dc.relation.references38. Yu, Z.; Jian, L.; Zhoumo, Z.; Jin, S. A combined Kalman filter-Discrete wavelet transform method for leakage detection of crude oil pipelines. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 3–1086.spa
dc.relation.references39. Vianna, F.; Orlande, H.; Dulikravich, G. Estimation of the temperature field in pipelines by using the Kalman filter. In Proceedings of the 2nd International Congress of Serbian Society of Mechanics (IConSSM 2009) , Palic (Subotica), Serbia, 1–5 June 2009; pp. 1 – 5.spa
dc.relation.references40. Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2010, 2, 14–22. [CrossRef]spa
dc.relation.references41. Dos Santos, P.L.; Azevedo-Perdicoúlis, T.; Jank, G.; Ramos, J.; de Carvalho, J.M. Leakage detection and location in gas pipelines through an LPV identification approach. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4657–4665. [CrossRef]spa
dc.relation.references42. Navarro, A.; Begovich, O.; Besançon, G. Calibration of fitting loss coefficients for modelling purpose of a plastic pipeline. In Proceedings of the IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA), Toulouse, France, 5–9 September 2011; pp. 1 – 6.spa
dc.relation.references43. Pizano-Moreno, A.; Begovich, O. Leak isolation with temperature compensation in pipelines. In Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 26–28 September 2012; pp. 1 – 5.spa
dc.relation.references44. Padilla, E.A.; Begovich, O. Real-time leak isolation based on a fault model approach algorithm in a water pipeline prototype. IFAC Proc. Vol. 2012, 45, 916–921. [CrossRef]spa
dc.relation.references45. Modisette, J.P. State estimation of pipeline models using the ensemble Kalman filter. In Proceedings of the PSIG Annual Meeting, Pipeline Simulation Interest Group, Prague, Czech Republic, 16–19 April 2013.spa
dc.relation.references46. Guillen, M.; Dulhoste, J.F.; Besançon, G.; Scola, I.R.; Santos, R.; Georges, D. Leak detection and location based on improved pipe model and nonlinear observer. In Proceedings of the European Control Conference (ECC2014), Strasbourg, France, 24–27 June 2014; pp. 958–963.spa
dc.relation.references47. Tian, J.; Wang, S.Q. Design and realization of the Kalman filter based on LabVIEW. Applied Mechanics and Materials. Trans Tech. Publ. 2014, 519, 1276–1280.spa
dc.relation.references48. Okeya, I.; Kapelan, Z.; Hutton, C.; Naga, D. Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Eng. 2014, 89, 418–427. [CrossRef]spa
dc.relation.references49. Behrooz, H.A.; Boozarjomehry, R.B. Modeling and state estimation for gas transmission networks. J. Nat. Gas Sci. Eng. 2015, 22, 551–570. [CrossRef]spa
dc.relation.references50. Al Ghailani, L.; El-Sinawi, A. Dynamic model of a new above-ground pipeline using a Kalman estimator-based system. In Proceedings of the IEEE Conference on Systems, Process and Control ( ICSPC), Kuala Lumpur, Malaysia, 19–20 December 2015; pp. 12–15.spa
dc.relation.references51. Zhou, D. Research on Natural Gas Pipeline Leak Detection Algorithm and Simulation. In Proceedings of the 2015 Chinese Intelligent Automation Conference, Fuzhou, China, 2–19 June 2015; pp. 355–361.spa
dc.relation.references52. Verde, C.; Rojas, J. Iterative Scheme for Sequential Leaks Location. IFAC-PapersOnLine 2015, 48, 726–731. [CrossRef]spa
dc.relation.references53. Choi, D.Y.; Kim, S.W.; Choi, M.A.; Geem, Z.W. Adaptive Kalman filter based on adjustable sampling interval in burst detection for water distribution system. Water 2016, 8, 142. [CrossRef]spa
dc.relation.references54. Durgut, I.;˙ Leblebiciog˘lu, M.K. State estimation of transient flow in gas pipelines by a Kalman filter-based estimator. J. Nat. Gas Sci. Eng. 2016, 35, 189–196. [CrossRef]spa
dc.relation.references55. Delgado-Aguiñaga, J.; Besançon, G.; Begovich, O.; Carvajal, J. Multi-leak diagnosis in pipelines based on Extended Kalman Filter. Control Eng. Pract. 2016, 49, 139–148. [CrossRef]spa
dc.relation.references56. Brunone, B. Transient test-based technique for leak detection in outfall pipes. J. Water Resour. Plan. Manag. 1999, 125, 302–306. [CrossRef]spa
dc.relation.references57. Kalman, R.E. A new approach to linear filtering and prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]spa
dc.relation.references58. Lauritzen, S.L. Time series analysis in 1880: A discussion of contributions made by TN Thiele. Int. Stat. Rev./Revue Int. Stat. 1981, 49, 319–331. [CrossRef]spa
dc.relation.references59. Lauritzen, S.L. Thiele: Pioneer in Statistics; Clarendon Press: Oxford, UK, 2002.spa
dc.relation.references60. Ljung, L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 1979, 24, 36–50. [CrossRef]spa
dc.relation.references61. Song, Y.; Grizzle, J.W. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. In Proceedings of the American Control Conference, Chicago, IL, USA, 24–26 June 1992 ; pp. 3365–3369.spa
dc.relation.references62. Andrews, A. Kalman Filtering: Theory and Practice Using MATLAB; Wiley: New York, NY, USA, January 2001. 63. Isermann, R.; Münchhof, M. Identification of Dynamic Systems: An Introduction with Applications; Springer: New York, NY, USA, 2010.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal