Show simple item record

dc.creatorTorres, Lizeth
dc.creatorJiménez-Cabas, Javier
dc.creatorGonzález, Omar
dc.creatorMolina, Lázaro
dc.creatorLopez Estrada, Francisco Ronay
dc.date.accessioned2020-04-20T21:58:30Z
dc.date.available2020-04-20T21:58:30Z
dc.date.issued2020-03-05
dc.identifier.issn2077-1312
dc.identifier.urihttps://hdl.handle.net/11323/6226
dc.description.abstractThe purpose of this paper is to provide a structural review of the progress made on the detection and localization of leaks in pipelines by using approaches based on the Kalman filter. To the best of the author’s knowledge, this is the first review on the topic. In particular, it is the first to try to draw the attention of the leak detection community to the important contributions that use the Kalman filter as the core of a computational pipeline monitoring system. Without being exhaustive, the paper gathers the results from different research groups such that these are presented in a unified fashion. For this reason, a classification of the current approaches based on the Kalman filter is proposed. For each of the existing approaches within this classification, the basic concepts, theoretical results, and relations with the other procedures are discussed in detail. The review starts with a short summary of essential ideas about state observers. Then, a brief history of the use of the Kalman filter for diagnosing leaks is described by mentioning the most outstanding approaches. At last, brief discussions of some emerging research problems, such as the leak detection in pipelines transporting heavy oils; the main challenges; and some open issues are addressed.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Marine Science and Engineeringes_ES
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectLeak detectiones_ES
dc.subjectKalman filteres_ES
dc.subjectPipelineses_ES
dc.titleKalman filters for leak diagnosis in pipelines: brief history and future researches_ES
dc.typeArticlees_ES
dcterms.references1. Drumond, G.P.; Pasqualino, I.P.; Pinheiro, B.C.; Estefen, S.F. Pipelines, risers and umbilicals failures: A literature review. Ocean Eng. 2018, 148, 412–425. [CrossRef]es_ES
dcterms.references2. Bermúdez, J.R.; López-Estrada, F.R.; Besançon, G.; Valencia-Palomo, G.; Torres, L.; Hernández, H.R. Modeling and simulation of a hydraulic network for leak diagnosis. Math. Comput. Appl. 2018, 23, 70. [CrossRef]es_ES
dcterms.references3. American Petroleum Institute. API RP 1130 (2007): Computational Pipeline Monitoring for Liquids; American Petroleum Institute: Washington, DC, USA, September 2007.es_ES
dcterms.references4. Geiger, G.; Werner, T.; Matko, D. Leak detection and locating-a survey. In Proceedings of the PSIG Annual Meeting, Pipeline Simulation Interest Group, Bern, Switzerland, 15–17 October 2003.es_ES
dcterms.references5. Besançon, G. Nonlinear Observers and Applications; Springer: Berlin, Germany, 2007; p. 224.es_ES
dcterms.references6. Besançon, G. Observer tools for pipeline monitoring. In Modeling and Monitoring of Pipelines and Networks; Springer: Berlin, Germany, 2017; pp. 83–97.es_ES
dcterms.references7. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 2019, 19, 2548. [CrossRef] [PubMed]es_ES
dcterms.references8. Simon, D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theor. Appl. 2010, 4, 1303–1318. [CrossRef]es_ES
dcterms.references9. Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: New York, NY, USA, 2009.es_ES
dcterms.references10. Digernes, T. Real-Time Failure-Detection and Identification Applied to Supervision of Oil Transport in Pipelines. Model. Identif. Control 1980, 1, 39–49. [CrossRef]es_ES
dcterms.references11. Benkherouf, A.; Allidina, A. Leak detection and location in gas pipelines. IEE Proc. D-Control Theory Appl. 1988, 135, 142–148. [CrossRef]es_ES
dcterms.references12. Besançon, G.; Georges, D.; Begovich, O.; Verde, C.; Aldana, C. Direct observer design for leak detection and estimation in pipelines. In Proceedings of the 2007 European Control Conference (ECC), Kos, Greece, 2–5 July 2007; pp. 5666–5670.es_ES
dcterms.references13. Geiger, I.G. Principles of leak detection. In Fundamentals of Leak Detection; KROHNE Oil and Gas: Reken, Germany, 2005.es_ES
dcterms.references14. Emara-Shabaik, H.; Khulief, Y.; Hussaini, I. A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 2002, 216, 497–512. [CrossRef]es_ES
dcterms.references15. Khulief, Y.; Emara-Shabaik, H. Laboratory investigation of a multiple-model state estimation scheme for detection and isolation of leaks in pipelines. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 2006, 220, 1–13. [CrossRef]es_ES
dcterms.references16. Bai, L.; Yue, Q.; Li, H. Sub-sea Pipelines Leak Detection and Location Based on Fluid Transient and FDI. In Proceedings of the the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004.es_ES
dcterms.references17. Doney, K. Leak Detection in Pipelines Using the Extended Kalman Filter and the Extended Boundary Approach. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 10 October 2007.es_ES
dcterms.references18. Begovich, O.; Navarro, A.; Sanchez, E.N.; Besançon, G. Comparison of two detection algorithms for pipeline leaks. In Proceedings of the IEEE International Conference on Control Applications, CCA 2007, Singapore, 1–3 October 2007; pp. 777–782.es_ES
dcterms.references19. Billmann, L.; Isermann, R. Leak detection methods for pipelines. Automatica 1987, 23, 381–385. [CrossRef]es_ES
dcterms.references20. Verde, C. Multi-leak detection and isolation in fluid pipelines. Control Eng. Pract. 2001, 9, 673–682. [CrossRef]es_ES
dcterms.references21. Chaudhry, M.H. Applied Hydraulic Transients; Van Nostrand Reinhold: New York, NY, USA, 1979.es_ES
dcterms.references22. Verde, C.; Bornard, G.; Gentil, S. Isolability of multi-leaks in a pipeline. In Proceedings of the 4th MATHMOD, Vienna, Austria, 5–7 February 2003.es_ES
dcterms.references23. Torres, L.; Besançon, G.; Georges, D. A collocation model for water-hammer dynamics with application to leak detection. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancún, Mexico, 9–11 December 2008; pp. 3890–3894.es_ES
dcterms.references24. Torres, L.; Besançon, G.; Georges, D. Collocation modeling with experimental validation for pipeline dynamics and application to transient data estimations. In Proceedings of the European Control Conference, ECC’09, Budapest, Hungary, 23–26 August 2009.es_ES
dcterms.references25. Dos Santos, P.L.; Azevedo-Perdicoúlis, T.; Ramos, J.; Jank, G.; de Carvalho, J.M.; Milhinhos, J. Gas pipelines LPV modelling and identification for leakage detection. In Proceedings of the American Control Conference (ACC2010), Baltimore, Maryland, USA, 30 June–2 July 2010; pp. 1211–1216.es_ES
dcterms.references26. Navarro, A.; Begovich, O.; Besançon, G.; Dulhoste, J. Real-time leak isolation based on state estimation in a plastic pipeline. In Proceedings of the IEEE International Conference on Control Applications CCA 2011 , Denver, CO, USA, 28–30 September 2011; pp. 953–957.es_ES
dcterms.references27. Colombo, A.F.; Karney, B.W. Energy and costs of leaky pipes: toward comprehensive picture. J. Water Resour. Plan. Manag. 2002, 128, 441–450. [CrossRef]es_ES
dcterms.references28. Delgado-Aguiñaga, J.; Begovich, O.; Besançon, G. Varying-parameter modeling and extended Kalman filtering for reliable leak diagnosis under temperature variations. In Proceedings of the 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016 ; pp. 632–637.es_ES
dcterms.references29. Verde, C.; Torres, L.; González, O. Decentralized scheme for leaks’ location in a branched pipeline. J. Loss Prev. Process Ind. 2016, 43, 18–28. [CrossRef]es_ES
dcterms.references30. Delgado-Aguiñaga, J.A.; Begovich, O. Water Leak Diagnosis in Pressurized Pipelines: A Real Case Study. In Modeling and Monitoring of Pipelines and Networks; Springer: New York, NY, USA, 2017; pp. 235–262.es_ES
dcterms.references31. Navarro, A.; Begovich, O.; Sánchez, J.; Besançon, G. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian J. Control 2017, 19, 255–265. [CrossRef]es_ES
dcterms.references32. Santos-Ruiz, I.; Bermúdez, J.; López-Estrada, F.; Puig, V.; Torres, L.; Delgado-Aguiñaga, J. Online leak diagnosis in pipelines using an EKF-based and steady-state mixed approach. Control Eng. Pract. 2018, 81, 55–64. [CrossRef]es_ES
dcterms.references33. Delgado-Aguiñaga, J.; Besançon, G. EKF-based leak diagnosis schemes for pipeline networks. IFAC-PapersOnLine 2018, 51, 723–729. [CrossRef]es_ES
dcterms.references34. Liu, P.; Li, S.; Wang, Z. Multi-leak diagnosis and isolation in oil pipelines based on Unscented Kalman filter. In Proceedings of the 30th Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 2222–2227.es_ES
dcterms.references35. Verde, C. Minimal order nonlinear observer for leak detection. J. Dyn. Syst. Meas. Control 2004, 126, 467–472. [CrossRef]es_ES
dcterms.references36. Verde, C.; Visairo, N. Identificability of multi-leaks in a pipeline. In Proceedings of the American Control Conference (ACC), Boston, MA, USA, 30 June–2 July 2004; Volume 5, pp. 4378–4383.es_ES
dcterms.references37. Gong, J.; Cai, J.; Li, X.; Song, S. Research on state estimation of oil pipeline considering adaptive extended Kalman filtering. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 1294–1298.es_ES
dcterms.references38. Yu, Z.; Jian, L.; Zhoumo, Z.; Jin, S. A combined Kalman filter-Discrete wavelet transform method for leakage detection of crude oil pipelines. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 3–1086.es_ES
dcterms.references39. Vianna, F.; Orlande, H.; Dulikravich, G. Estimation of the temperature field in pipelines by using the Kalman filter. In Proceedings of the 2nd International Congress of Serbian Society of Mechanics (IConSSM 2009) , Palic (Subotica), Serbia, 1–5 June 2009; pp. 1 – 5.es_ES
dcterms.references40. Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2010, 2, 14–22. [CrossRef]es_ES
dcterms.references41. Dos Santos, P.L.; Azevedo-Perdicoúlis, T.; Jank, G.; Ramos, J.; de Carvalho, J.M. Leakage detection and location in gas pipelines through an LPV identification approach. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4657–4665. [CrossRef]es_ES
dcterms.references42. Navarro, A.; Begovich, O.; Besançon, G. Calibration of fitting loss coefficients for modelling purpose of a plastic pipeline. In Proceedings of the IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA), Toulouse, France, 5–9 September 2011; pp. 1 – 6.es_ES
dcterms.references43. Pizano-Moreno, A.; Begovich, O. Leak isolation with temperature compensation in pipelines. In Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 26–28 September 2012; pp. 1 – 5.es_ES
dcterms.references44. Padilla, E.A.; Begovich, O. Real-time leak isolation based on a fault model approach algorithm in a water pipeline prototype. IFAC Proc. Vol. 2012, 45, 916–921. [CrossRef]es_ES
dcterms.references45. Modisette, J.P. State estimation of pipeline models using the ensemble Kalman filter. In Proceedings of the PSIG Annual Meeting, Pipeline Simulation Interest Group, Prague, Czech Republic, 16–19 April 2013.es_ES
dcterms.references46. Guillen, M.; Dulhoste, J.F.; Besançon, G.; Scola, I.R.; Santos, R.; Georges, D. Leak detection and location based on improved pipe model and nonlinear observer. In Proceedings of the European Control Conference (ECC2014), Strasbourg, France, 24–27 June 2014; pp. 958–963.es_ES
dcterms.references47. Tian, J.; Wang, S.Q. Design and realization of the Kalman filter based on LabVIEW. Applied Mechanics and Materials. Trans Tech. Publ. 2014, 519, 1276–1280.es_ES
dcterms.references48. Okeya, I.; Kapelan, Z.; Hutton, C.; Naga, D. Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Eng. 2014, 89, 418–427. [CrossRef]es_ES
dcterms.references49. Behrooz, H.A.; Boozarjomehry, R.B. Modeling and state estimation for gas transmission networks. J. Nat. Gas Sci. Eng. 2015, 22, 551–570. [CrossRef]es_ES
dcterms.references50. Al Ghailani, L.; El-Sinawi, A. Dynamic model of a new above-ground pipeline using a Kalman estimator-based system. In Proceedings of the IEEE Conference on Systems, Process and Control ( ICSPC), Kuala Lumpur, Malaysia, 19–20 December 2015; pp. 12–15.es_ES
dcterms.references51. Zhou, D. Research on Natural Gas Pipeline Leak Detection Algorithm and Simulation. In Proceedings of the 2015 Chinese Intelligent Automation Conference, Fuzhou, China, 2–19 June 2015; pp. 355–361.es_ES
dcterms.references52. Verde, C.; Rojas, J. Iterative Scheme for Sequential Leaks Location. IFAC-PapersOnLine 2015, 48, 726–731. [CrossRef]es_ES
dcterms.references53. Choi, D.Y.; Kim, S.W.; Choi, M.A.; Geem, Z.W. Adaptive Kalman filter based on adjustable sampling interval in burst detection for water distribution system. Water 2016, 8, 142. [CrossRef]es_ES
dcterms.references54. Durgut, I.;˙ Leblebiciog˘lu, M.K. State estimation of transient flow in gas pipelines by a Kalman filter-based estimator. J. Nat. Gas Sci. Eng. 2016, 35, 189–196. [CrossRef]es_ES
dcterms.references55. Delgado-Aguiñaga, J.; Besançon, G.; Begovich, O.; Carvajal, J. Multi-leak diagnosis in pipelines based on Extended Kalman Filter. Control Eng. Pract. 2016, 49, 139–148. [CrossRef]es_ES
dcterms.references56. Brunone, B. Transient test-based technique for leak detection in outfall pipes. J. Water Resour. Plan. Manag. 1999, 125, 302–306. [CrossRef]es_ES
dcterms.references57. Kalman, R.E. A new approach to linear filtering and prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]es_ES
dcterms.references58. Lauritzen, S.L. Time series analysis in 1880: A discussion of contributions made by TN Thiele. Int. Stat. Rev./Revue Int. Stat. 1981, 49, 319–331. [CrossRef]es_ES
dcterms.references59. Lauritzen, S.L. Thiele: Pioneer in Statistics; Clarendon Press: Oxford, UK, 2002.es_ES
dcterms.references60. Ljung, L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 1979, 24, 36–50. [CrossRef]es_ES
dcterms.references61. Song, Y.; Grizzle, J.W. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. In Proceedings of the American Control Conference, Chicago, IL, USA, 24–26 June 1992 ; pp. 3365–3369.es_ES
dcterms.references62. Andrews, A. Kalman Filtering: Theory and Practice Using MATLAB; Wiley: New York, NY, USA, January 2001. 63. Isermann, R.; Münchhof, M. Identification of Dynamic Systems: An Introduction with Applications; Springer: New York, NY, USA, 2010.es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doidoi:10.3390/jmse8030173


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal