Show simple item record

dc.creatorRodríguez Merchán, Eduardo Vicente
dc.creatorFuentes Espinoza, Pablo Gustavo
dc.creatorBenítez Pina, Israel Francisco
dc.creatorReina Tabares, Danner
dc.creatorNúñez Alvarez, José Ricardo
dc.date.accessioned2020-04-22T01:42:16Z
dc.date.available2020-04-22T01:42:16Z
dc.date.issued2017
dc.identifier.issn1697-7920
dc.identifier.issn1697-7912
dc.identifier.urihttps://hdl.handle.net/11323/6234
dc.description.abstractWireless sensor networks have a wide range of applications and many pending challenges, especially those related to the evolution of digital electronics, bandwidth, reduction of implementation costs, network coverage and processing capacity. This document proposes a configuration of multi-hop wireless network oriented to intelligent domotic installations, based on 32-bit microcontrollers and low cost wireless communication modules, which allows to have complete coverage between the devices of the home automation system with a reduced loss of data, improvement in the processing capacity, adaptability and scalability in the nodes. The evaluation of network performance considers the following metrics: response time, network reach, scalability and precision. The experimental results determined a successful adaptation of the AODV multi-hop protocol, allowing sufficient coverage for a single-family house, at transmission speeds of 250Kbps, which guarantees the integrity and security of the data.spa
dc.description.abstractLas redes de sensores inalámbricos disponen de un campo muy amplio de aplicaciones y aún muchos desafíos pendientes, especialmente aquellos relacionados con la evolución de la electrónica digital, ancho de banda, reducción de costos de implementación, cobertura de red y capacidad de procesamiento. Este documento propone una configuración de red inalámbrica multisalto orientada a instalaciones domóticas inteligentes, basadas en microcontroladores de 32 bits y módulos de comunicación inalámbrica de bajo costo, que permita tener cobertura completa entre los dispositivos del sistema domótico con una reducida pérdida de datos, mejora en la capacidad de procesamiento, adaptabilidad y escalabilidad en los nodos sensores. La evaluación del desempeño de la red considera las siguientes métricas: tiempo de respuesta, alcance de red, escalabilidad y precisión. Los resultados experimentales determinaron una adaptación exitosa del protocolo multisalto AODV, permitiendo una cobertura suficiente para una vivienda unifamiliar, a una velocidad de transmisión de 250Kbps, que garantiza la integridad y seguridad de los datos.spa
dc.language.isospaspa
dc.publisherRevista Iberoamericana de Automatica e Informatica Industrialspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectRedes de sensores inalámbricasspa
dc.subjectComunicaciones y redes de comunicacionesspa
dc.subjectRedes multisaltospa
dc.subjectControl con microprocesadorspa
dc.subjectQoSspa
dc.subjectArquitecturas de control distribuidospa
dc.subjectSensorsspa
dc.subjectNetworksspa
dc.subjectCommunications systemsspa
dc.subjectCommunications networksspa
dc.subjectMicroprocessorsspa
dc.subjectArchitecturesspa
dc.subjectDistributed controlspa
dc.titleRed de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendidaspa
dc.typeArticlespa
dcterms.referencesAhmad, A., Roslan, M. F., & Amira, A., 2017. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports. In AIP Conference Proceedings (Vol. 1883, No. 1, p. 020010). AIP Publishing.spa
dcterms.referencesAbdellaoui, M., Gargouri, R., Mezghani, M., 2014. Optimization of WSNs Flooding Rates by Khalimsky Topology. Transactions on Networks and Communications, 2(6), 25-38.spa
dcterms.referencesAl-Haija, Q. A., Al-Qadeeb, H., & Al-Lwaimi, A., 2013. Case Study: Monitoring of AIR quality in King Faisal University using a microcontroller and WSN. Procedia Computer Science, 21, 517-521.spa
dcterms.referencesAsencio, G., Maestre, J., Escaño, J., Martín Macareno, C., Molina, M., Camacho, E., 2011. Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee. Revista Iberoamericana de Automática e Informática industrial 8(4), 397-404. DOI:10.1016/j.riai.2011.09.002spa
dcterms.referencesBaroudi, U., Bin-Yahya, M., Alshammari, M., Yaqoub, U., 2019. Ticketbased QoS routing optimization using genetic algorithm for WSN applications in smart grid. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1325-1338.spa
dcterms.referencesBelagali, R., Anusha, A. M., Sangulagi, P., 2015. Energy-Efficient Secure Routing and Aggregation in Military Sensor Network using Multi-Agent Approach. In Applied and Theoretical Computing and Communication Technology (iCATccT), 2015 International Conference on 286-292. IEEE. DOI: 10.1109/ICATCCT.2015.7456897spa
dcterms.referencesBenítez, J. D., Sosa, E. O., Godoy, D. A., Belloni, E. A., Favret, F., Bareiro, H., Urdinola, R., Olivera, M., 2017. Ampliando la Vida Útil de las WSN por Medio de los Protocolos de Ruteo, Modificación de AODV. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires). URL: http://sedici.unlp.edu.ar/handle/10915/61567spa
dcterms.referencesBondorf, S., Jens, B. S., 2010. Statistical response time bounds in randomly deployed wireless sensor networks. In Local Computer Networks (LCN). IEEE 35th Conference on 340-343. IEEE. DOI: 10.1109/LCN.2010.5735738spa
dcterms.referencesCampamá, D. S., 2012. Sistema operativo para redes inalámbrica de sensores. Tesis de maestría, Pontificia Universidad católica de Chile. URL: https://repositorio.uc.cl/handle/11534/1723spa
dcterms.referencesDi Nisio, A., Di Noia, T., Carducci, C. G. C., & Spadavecchia, M., 2016. High dynamic range power consumption measurement in microcontroller-based applications. IEEE Transactions on Instrumentation and Measurement, 65(9), 1968-1976.spa
dcterms.referencesEscribano, J., García, A., de la Fuente, M., 2011. Monitorización de la Condición Física de Personas en Espacios Confinados Mediante Etiquetas RFID con Sensores y Redes Inalámbricas Eficientes. Revista Iberoamericana de Automática e Informática industrial 8(4), 371-384.spa
dcterms.referencesEspressif Systems, 2018. ESP8266 Non-OS SDK. Version 3.0. URL: https://www.espressif.com/sites/default/files/documentation/2cesp8266_non_os_sdk_api_reference_en.pdfspa
dcterms.referencesEspressif, 2016. ESP8266 Mesh User Guide. Version 1.2. URL: https://docplayer.net/33922006-Esp8266-mesh-user-guide.htmlspa
dcterms.referencesFajriansyah, B., Ichwan, M., & Susana, R., 2016. Evaluasi Karakteristik XBee Pro dan nRF24L01 sebagai Transceiver Nirkabel. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, 4(1), 83.spa
dcterms.referencesFischione, C., 2014. An Introduction to Wireless Sensor Networks. Royal Institute of technology. Draft, version 1.8. URL: https://www.kth.se/social/files/5431a388f276540a05ad2514/An_Introduc tion_WSNS_V1.8.pdf.spa
dcterms.referencesGarcía, D., 2015. Estudio de 6loWPAN para su aplicación a Internet de las Cosas. Trabajo de fin de grado. URL: https://riull.ull.es/xmlui/bitstream/handle/915/945/Estudio+de+6loWPAN +para+su+aplicacion+a+Internet+de+las+Cosas.pdf?sequence=1.spa
dcterms.referencesHong, S. H., Kim, B., Eom, D. S., 2007. A base-station centric data gathering routing protocol in sensor networks useful in home automation applications. IEEE Transactions on Consumer Electronics 53(3), 945- 951. DOI: 10.1109/TCE.2007.4341570spa
dcterms.referencesHsieh, F. S., Lin, J. B., 2014. A multiagent approach for managing collaborative workflows in supply chains. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 71-76. IEEE. DOI: 10.1109/CSCWD.2014.6846819spa
dcterms.referencesJaggi, S., and Wasson, E., 2016. Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN. Industrial Engineering & Management Systems, 15(3), 259-267.spa
dcterms.referencesKailas, A., Cecchi, V., & Mukherjee, A., 2012. A survey of communications and networking technologies for energy management in buildings and home automation. Journal of Computer Networks and Communications, 2012(932181), 1-6. DOI: 10.1155/2012/932181.spa
dcterms.referencesKelly, S. D. T., Suryadevara, N. K., Mukhopadhyay, S. C., 2013.Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. IEEE Sensors Journal 13(10), 3846-3853. DOI: 10.1109/JSEN.2013.2263379spa
dcterms.referencesLi, M., Lin H. J., 2015. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Transactions On Industrial Electronics 62(7). 4430-4442. DOI: 10.1109/TIE.2014.2379586spa
dcterms.referencesLiao, C., Zhu, K., Tang, J., Zhang, S., 2016. Wireless Sensor Network Performance Research for LEACH Based on Multi-Agent Simulation. IEEE International Conference on Agents (ICA) 98-99. IEEE. DOI: 10.1109/ICA.2016.031spa
dcterms.referencesLópez Torres, V. 2014. Diseño de un modelo de red domótica libre basada en componentes OpenDomo para aplicación a un pequeño hotel.spa
dcterms.referencesMagno, M., Polonelli, T., Benini, L., Popovici, E., 2015. A Low Cost, Highly Scalable Wireless Sensor Network Solution to Achieve Smart LED Light Control for Green Buildings. IEEE Sensors Journal 15(5), 2963-2973. DOI: 10.1109/JSEN.2014.2383996spa
dcterms.referencesManda, S., Shukla, Y., Shrivastava, K., Patil, T. B., & Sawant-Patil, S. T., 2018. A Literature Survey on Wireless Sensor Network in Home Automation Based on Internet of Things.spa
dcterms.referencesMedina, C., 2017. Control de Congestión en Redes Inalámbicas de Sensores. Tesis de maestría, Pontificia Universidad Javeriana. Bogota - Colombia.spa
dcterms.referencesMezghani, M., Abdellaoui, P., 2015. WSN intelligent communication based on Khalimsky theory using multi-agent systems. In 2015 SAI Intelligent Systems Conference (IntelliSys) (pp. 871-876). IEEE.spa
dcterms.referencesMicrochip, 2020. URL: https://www.microchip.com/wwwproducts/en/ PIC16F628Aspa
dcterms.referencesMostafaei, H., 2019. Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-5575.spa
dcterms.referencesNarten, T., Nordmark, E., Simpson, W., Soliman, H., 2007. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, DOI 10.17487/RFC4861.spa
dcterms.referencesNikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B., 2018. Lowpower wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893-67926.spa
dcterms.referencesNordic Semiconductor. (2008). nRF24L01 Single Chip 2.4GHz Transceiver. URL: https://www.nordicsemi.com/DocLib?Product=nRF24spa
dcterms.referencesNúñez, José Ricardo et al., 2019. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática industrial, [S.l.], v. 17, n. 1, p. 94-105. https://doi.org/10.4995/riai.2019.11449spa
dcterms.referencesNuñez, J. R., Benítez, I.F., Rodriguez, A., Diaz, S., Oliveira, D., 2019. Tools for the implementation of a SCADA system in a desalination process. IEEE Latin America Transactions, 17(11), 1858-1864. DOI: 10.1109/TLA.2019.8986424spa
dcterms.referencesPaavola, M., Leiviska, K., 2010. Wireless Sensor Networks in Industrial Automation. In Factory Automation. InTech. DOI: 10.5772/9532.spa
dcterms.referencesPeñín, P., Díaz, A., Medina, J., Sánchez P., 2017. High-Level Design of Wireless Sensor Networks for Performance Optimization Under Security Hazards. ACM Transactions on Sensor Networks (TOSN) 13(3), 19. DOI: 10.1145/3078359.spa
dcterms.referencesPerkins, C., Belding, E., Das, S., 2003. Ad hoc On-Demand Distance Vector (AODV) Routing. (No. RFC 3561). DOI: 10.17487/RFC3561spa
dcterms.referencesPosadas Yagüe, J. L., & Poza Luján, J. L. (2009). Revisión de las arquitecturas de control distribuido. URL: https://riunet.upv.es/handle/10251/6407spa
dcterms.referencesQin, J., Fu, W., Gao, H., Xing W., 2016. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory. IEEE transactions on cybernetics, 47(3), 772-783. DOI: 10.1109/TCYB.2016.2526683.spa
dcterms.referencesRandhawa, S., 2014. Research Challenges in Wireless Sensor Network: A State of the Play. Conference Proceeding of National Conference of Science, Engineering y Management in Education and Research. arXiv preprint arXiv:1404.1469v1 [cs.NI]spa
dcterms.referencesRawat, P., Singh, K. D., Chaouchi, H., Bonnin, J. M., 2014. Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing 68(1), 1-48. DOI:10.1007/s11227-013-1021-9spa
dcterms.referencesRodríguez, A., 2011. Sistemas SCADA. Tercera Edición. Marcombo: Barcelona. ISBN: 978-8426717818.spa
dcterms.referencesSaha, Himadri & Mandal, Shashwata & Mitra, Shinjan & Banerjee, Soham & Saha, Urmi., 2017. Comparative Performance Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks. International Journal of Computer Network and Information Security. 9. 36-44. 10.5815/ijcnis.2017.07.05.spa
dcterms.referencesSaravanan, S., Poovazhaki, R., Shanker, N., 2018. Cluster Topology in WSN with SCPS for QoS. Wireless Personal Communications, 99(3), 12951314.spa
dcterms.referencesSTMicroelectronics, 2018. STM32F103xC STM32F103x, STM32F103xE. DS5792 Rev 13. URL: https://www.st.com/resource/en/datasheet/stm32f103rc.pdfspa
dcterms.referencesSTMicroelectronics, 2019. STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC. DS9773 Rev 4. URL: https://www.st.com/resource/en/datasheet/stm32f030f4.pdfspa
dcterms.referencesSnigdh, I., & Gupta, N. 2016. Quality of service metrics in wireless sensor networks: A survey. Journal of The Institution of Engineers (India): Series B, 97(1), 91-96.spa
dcterms.referencesSuárez, A., and Núñez, J. R., 2019. 1D Convolutional Neural Network for Detecting Ventricular Heartbeats. IEEE Latin America Transactions, 17(12), 1970-1977. DOI: 10.1109/TLA.2019.9011541.spa
dcterms.referencesSutagundar, A., Bennur, V., Anusha, A., Bhanu, K., 2016. Agent Based Fault Tolerance in Wireless Sensor Networks. 2016 International Conference on Inventive Computation Technologies (ICICT) 1, 1-6. IEEE.spa
dcterms.referencesValencia, G., Núñez, J., Vanegas, M., 2020. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia. Data in Brief, 27, 104753. DOI: 10.1016/j.dib.2019.104753spa
dcterms.referencesVidhya, S., Sasilatha, T., 2018. Secure Data Transfer Using Multi Layer Security Protocol with Energy Power Consumption AODV in Wireless Sensor Networks. Wireless Personal Communications, 103(4), 30553077.spa
dcterms.referencesVillarrubia, G., De Paz, J., De La Iglesia, D., Bajo, J., 2017. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. 17(8), 1775. DOI: https://doi.org/10.3390/s17081775spa
dcterms.referencesWadhwa, L., Deshpande, R., Priye, V., 2016. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37, 295300.spa
dcterms.referencesYang, S.H., 2014. Wireless Sensor Network. Londres, Reino Unido: Springer. ISBN 978-1-4471-5505-8.spa
dcterms.referencesYu, K., Xie, Z., Qian, J., y Jin, G., 2013. The Implementation of Electronic Intelligent Tag System Based on Wireless Sensor Network. Communications and Network 5(01), 39. Doi:10.4236/cn.2013.51B010.spa
dcterms.referencesZhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M., 2018. A survey on fault diagnosis in wireless sensor networks. IEEE Access, 6, 11349-11364.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.4995/riai.2020.12301
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal