Show simple item record

dc.creatorMarques, Bianca S.
dc.creatorDalmagro, Keterli
dc.creatorMoreira, Kelly S.
dc.creatorOliveira, Marcos L.S.
dc.creatorJahn, Sergio L.
dc.creatorDe Lima Burgo, Thiago A.
dc.creatorDotto, Guilherme L.
dc.description.abstractPowdered layered double hydroxides (LDH) based on calcium-aluminum (Ca–Al), nickel-aluminum (Ni–Al), and zinc-aluminum (Zn–Al) were synthesized with the purpose to evaluate the removal of o-nitrophenol from synthetic effluents by adsorption. It was verified that Ca–Al, Ni–Al, and Zn–Al LDHs presented a typical layered structure confirming the successful synthesis. o-nitrophenol adsorption on the LDH powders was favored at a pH of 5.0, being attained removal percentages from 70 to 90%, depending on the material. Kinetic experimental data obeyed the general order model, while, Sips represented the experimental equilibrium behavior of the three materials adequately. The maximum adsorption capacities were 135.1 mg g−1,122.1 mg g−1 and 130.3 mg g−1 for Ca–Al, Ni–Al, and Zn–Al LDHs, respectively. For simulated effluent, it was attained a removal of up to 60.3% using Ni–Al LDH. In a general way, the layered double hydroxides based on Ca–Al, Ni–Al, and Zn–Al exhibited an interesting potential as adsorbent materials for the treatment of simulated effluents containing o-nitrophenol. Ni–Al is preferred due to its better performance in the treatment of simulated effluents and higher regeneration
dc.rightsCC0 1.0 Universal*
dc.subjectGeneral orderspa
dc.subjectLayered structurespa
dc.subjectSimulated effluentspa
dc.titleCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenolspa
dcterms.references[1] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256 (2010) 4447e4455,
dcterms.references[2] United States Environmental Protection Agency, Ambient water quality criteria for nitrophenols, in: In Canadian Cataloging in Publication Data 2, 1980. Issue
dcterms.references[3] S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J.C. Bollinger, M. Baudu, Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon, Chem. Eng. J. 279 (2015) 964e972, https://
dcterms.references[4] B. Kordi c, B. Jovi c, J. Trickovi c, M. Kovacevi c, Adsorption of selected nitrophenols on activated carbon in the presence of nicotinamide, J. Mol. Liq. 259 (2018) 7e15,
dcterms.references[5] M.E. Mahmoud, G.M. Nabil, Nano zirconium silicate-coated manganese dioxide nanoparticles: microwave-assisted synthesis, process optimization, adsorption isotherm, kinetic study and thermodynamic parameters for removal of 4-nitrophenol, J. Mol. Liq. 240 (2017) 280e290, 10.1016/
dcterms.references[6] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja, Kinetics, and equilibrium study of 2- nitrophenol adsorption onto polyurethane cross-linked pine cone biomass, J. Clean. Prod. 179 (2018) 191e209,
dcterms.references[7] Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta 899 (2015) 75e84,
dcterms.references[8] F. Deng, Q. Zhang, L. Yang, X. Luo, A. Wang, S. Luo, D.D. Dionysiou, Visiblelight-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/ Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment, Appl. Catal. B Environ. 238 (2018) 61e69,
dcterms.references[9] F.R. Zaggout, N. Abu Ghalwa, Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode, J. Environ. Manag. 86 (2008) 291e296,
dcterms.references[10] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorp- tion Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51,
dcterms.references[11] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Removal of 2- nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties, Appl. Catal. B Environ. 140e141 (2013) 356e362,
dcterms.references[12] J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal-organic framework Cr-BDC, Chin. J. Chem. Eng. 25 (2017) 775e781,
dcterms.references[13] L. Shao, J. Huang, Controllable synthesis of N-vinyl imidazole-modified hypercross-linked resins and their efficient adsorption of p-nitrophenol and onitrophenol, J. Colloid Interface Sci. 507 (2017) 42e50, 10.1016/
dcterms.references[14] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti, Adsorption of 2- nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25e35,
dcterms.references[15] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2017) 172e186,
dcterms.references[16] C. Barriga, M. Gait an, I. Pavlovic, M.A. Ulibarri, M.C. Hermos~ õn, J. Cornejo, Hydrotalcites as sorbent for 2,4,6-trinitrophenol: influence of the layer composition and interlayer anion, J. Mater. Chem. 12 (2002) 1027e1034,
dcterms.references[17] A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorptiondesorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide, Appl. Clay Sci. 80e81 (2013) 305e312, 10.1016/
dcterms.references[18] H. Hatami, A. Fotovat, A. Halajnia, Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution, Appl. Clay Sci. 152 (2017) 333e341,
dcterms.references[19] E.M. Seftel, R.G. Ciocarlan, B. Michielsen, V. Meynen, S. Mullens, P. Cool, Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides, Appl. Clay Sci. 165 (2018) 234e246, https://
dcterms.references[20] A. Elhalil, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, R. Elmoubarki, H. Tounsadi, M. Abdennouri, N. Barka, Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants, J. Sci. Adv. Mater. Dev. 3 (2018) 188e195,
dcterms.references[21] E.H. Mourid, M. Lakraimi, L. Benaziz, E.H. Elkhattabi, A. Legrouri, Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide, Appl. Clay Sci. 168 (2018) 87e95, 10.1016/j.clay.2018.11.005spa
dcterms.references[22] T. Xiong, X. Yuan, X. Wang, Z. Wu, L. Jiang, L. Leng, K. Xi, X. Cao, G. Zeng, Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite, Chem. Eng. J. 366 (2019) 83e91,
dcterms.references[23] I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259 (2012) 650e656,
dcterms.references[24] F.P. De Sa, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3), Chem. Eng. J. 215e216 (2013) 122e127,
dcterms.references[25] F. Mohamed, M.R. Abukhadra, M. Shaban, M, Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties, Sci. Total Environ. 640e641 (2018) 352e363, 10.1016/
dcterms.references[26] L. Cao, J. Guo, J. Tian, Y. Xu, M. Hu, M. Wang, J. Fan, Preparation of Ca/AlLayered Double Hydroxide and the influence of their structure on early strength of cement, Construct. Build. Mater. 184 (2018) 203e214, https://
dcterms.references[27] B. Li, J. He, D.G. Evans, X. Duan, Morphology, and size control of Ni-Al layered double hydroxides using chitosan as a template, J. Phys. Chem. Solid. 67 (2006) 1067e1070,
dcterms.references[28] L. Cocheci, L. Lupa, M. Gheju, A. Golban, R. Lazau, R. Pode, Zn-Al-CO 3 layered double hydroxides prepared from a waste of hot-dip galvanizing process, B.S. Marques et al. / Journal of Alloys and Compounds 838 (2020) 155628 11 Clean Technol, Environ. Pol. 20 (2018) 1105e1112,
dcterms.references[29] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard Mater. 149 (2007) 269e274,
dcterms.references[30] G.L. Dotto, N.P.G. Salau, J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 53e76,
dcterms.references[31] J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, G.L. Dotto, Adsorption isotherms in liquid phase: experimental, modeling, and interpretations, in: A. BonillaPetriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Pro- cesses for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51,
dcterms.references[32] A. Bonilla-Petriciolet, D. Mendoza-Castillo, G.L. Dotto, J.C. Duran-Valle, Adsorption in water treatment, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019, pp. 1e21,
dcterms.references[33] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067e1080, 10.1016/
dcterms.references[34] C.H. Wu, Y.P. Chang, S.Y. Chen, D.M. Liu, C.T. Yu, B.L. Pen, Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high-temperature CO2 adsorption, J. Nanosci. Nanotechnol. 10 (2010) 4716e4720, 10.1166/
dcterms.references[35] J. Olanrewaju, B.L. Newalkar, C. Mancino, S. Komarneni, Simplified synthesis of nitrate form of layered double hydroxide, Mater. Lett. 45 (2000) 307e310,
dcterms.references[36] A.A.E. Sakr, T. Zaki, O. Saber, S.A. Hassan, A.K. Aboul-Gheit, S. Faramawy, Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas, J. Taiwan Inst. Chem. Eng. 44 (2013) 957e962,
dcterms.references[37] M.V. Bukhtiyarova, A review on the effect of synthesis conditions on the formation of layered double hydroxides, J. Solid State Chem. 269 (2018) 494e506,
dcterms.references[38] H. Lu, J. Chen, Q. Tian, Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles, J. Colloid Interface Sci. 513 (2018) 342e348, 10.1016/
dcterms.references[39] M. Hu, X. Yan, X. Hu, R. Feng, M. Zhou, High-capacity adsorption of benzotriazole from aqueous solution by calcined Zn-Al layered double hydroxides, Colloid, Surf. A: Physicochem. Eng. Asp. 540 (2018) 207e214, 10.1016/
dcterms.references[40] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051e1069, 1117spa
dcterms.references[41] N. Baig, S.M. Ihsanullah, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: a review, J. Environ. Manag. 244 (2018) 370e382,
dcterms.references[42] A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz, Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 300 (2006) 498e503,
dcterms.references[43] K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res. 42 (2008) 1343e1368, https://
dcterms.references[44] C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci. 47 (1973), 10.1007/s41193-016-0111-5,
dcterms.references[45] E.L. Kochany, Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction, Chemosphere 24 (1992) 1369e1380,

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal