Mostrar el registro sencillo del ítem

dc.contributor.authorMarques, Bianca S.spa
dc.contributor.authorDalmagro, Keterlispa
dc.contributor.authorMoreira, Kelly S.spa
dc.contributor.authorOliveira, Marcos L.S.spa
dc.contributor.authorJahn, Sergio L.spa
dc.contributor.authorDe Lima Burgo, Thiago A.spa
dc.contributor.authorDotto, Guilherme L.spa
dc.date.accessioned2020-05-28T16:05:05Z
dc.date.available2020-05-28T16:05:05Z
dc.date.issued2020-05-13
dc.identifier.urihttps://hdl.handle.net/11323/6300spa
dc.description.abstractPowdered layered double hydroxides (LDH) based on calcium-aluminum (Ca–Al), nickel-aluminum (Ni–Al), and zinc-aluminum (Zn–Al) were synthesized with the purpose to evaluate the removal of o-nitrophenol from synthetic effluents by adsorption. It was verified that Ca–Al, Ni–Al, and Zn–Al LDHs presented a typical layered structure confirming the successful synthesis. o-nitrophenol adsorption on the LDH powders was favored at a pH of 5.0, being attained removal percentages from 70 to 90%, depending on the material. Kinetic experimental data obeyed the general order model, while, Sips represented the experimental equilibrium behavior of the three materials adequately. The maximum adsorption capacities were 135.1 mg g−1,122.1 mg g−1 and 130.3 mg g−1 for Ca–Al, Ni–Al, and Zn–Al LDHs, respectively. For simulated effluent, it was attained a removal of up to 60.3% using Ni–Al LDH. In a general way, the layered double hydroxides based on Ca–Al, Ni–Al, and Zn–Al exhibited an interesting potential as adsorbent materials for the treatment of simulated effluents containing o-nitrophenol. Ni–Al is preferred due to its better performance in the treatment of simulated effluents and higher regeneration potential.spa
dc.language.isoeng
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectAdsorptionspa
dc.subjectGeneral orderspa
dc.subjectLayered structurespa
dc.subjectNitrophenolspa
dc.subjectSimulated effluentspa
dc.titleCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenolspa
dc.typePre-Publicaciónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jallcom.2020.155628spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256 (2010) 4447e4455, https://doi.org/10.1016/ j.apsusc.2010.01.057.spa
dc.relation.references[2] United States Environmental Protection Agency, Ambient water quality criteria for nitrophenols, in: In Canadian Cataloging in Publication Data 2, 1980. Issue October.spa
dc.relation.references[3] S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J.C. Bollinger, M. Baudu, Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon, Chem. Eng. J. 279 (2015) 964e972, https:// doi.org/10.1016/j.cej.2015.05.012.spa
dc.relation.references[4] B. Kordi c, B. Jovi c, J. Trickovi c, M. Kovacevi c, Adsorption of selected nitrophenols on activated carbon in the presence of nicotinamide, J. Mol. Liq. 259 (2018) 7e15, https://doi.org/10.1016/j.molliq.2018.02.109.spa
dc.relation.references[5] M.E. Mahmoud, G.M. Nabil, Nano zirconium silicate-coated manganese dioxide nanoparticles: microwave-assisted synthesis, process optimization, adsorption isotherm, kinetic study and thermodynamic parameters for removal of 4-nitrophenol, J. Mol. Liq. 240 (2017) 280e290, https://doi.org/ 10.1016/j.molliq.2017.05.075.spa
dc.relation.references[6] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja, Kinetics, and equilibrium study of 2- nitrophenol adsorption onto polyurethane cross-linked pine cone biomass, J. Clean. Prod. 179 (2018) 191e209, https://doi.org/10.1016/ j.jclepro.2018.01.034.spa
dc.relation.references[7] Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta 899 (2015) 75e84, https://doi.org/10.1016/j.aca.2015.10.004.spa
dc.relation.references[8] F. Deng, Q. Zhang, L. Yang, X. Luo, A. Wang, S. Luo, D.D. Dionysiou, Visiblelight-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/ Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment, Appl. Catal. B Environ. 238 (2018) 61e69, https://doi.org/10.1016/j.apcatb.2018.05.004.spa
dc.relation.references[9] F.R. Zaggout, N. Abu Ghalwa, Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode, J. Environ. Manag. 86 (2008) 291e296, https://doi.org/10.1016/ j.jenvman.2006.12.033.spa
dc.relation.references[10] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorp- tion Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319- 58136-1_2.spa
dc.relation.references[11] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Removal of 2- nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties, Appl. Catal. B Environ. 140e141 (2013) 356e362, https://doi.org/10.1016/j.apcatb.2013.04.031.spa
dc.relation.references[12] J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal-organic framework Cr-BDC, Chin. J. Chem. Eng. 25 (2017) 775e781, https://doi.org/10.1016/j.cjche.2016.10.014.spa
dc.relation.references[13] L. Shao, J. Huang, Controllable synthesis of N-vinyl imidazole-modified hypercross-linked resins and their efficient adsorption of p-nitrophenol and onitrophenol, J. Colloid Interface Sci. 507 (2017) 42e50, https://doi.org/ 10.1016/j.jcis.2017.07.112.spa
dc.relation.references[14] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti, Adsorption of 2- nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25e35, https://doi.org/10.1016/ j.biortech.2019.03.110.spa
dc.relation.references[15] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2017) 172e186, https://doi.org/10.1016/j.clay.2017.12.021.spa
dc.relation.references[16] C. Barriga, M. Gait an, I. Pavlovic, M.A. Ulibarri, M.C. Hermos~ õn, J. Cornejo, Hydrotalcites as sorbent for 2,4,6-trinitrophenol: influence of the layer composition and interlayer anion, J. Mater. Chem. 12 (2002) 1027e1034, https://doi.org/10.1039/b107979b.spa
dc.relation.references[17] A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorptiondesorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide, Appl. Clay Sci. 80e81 (2013) 305e312, https://doi.org/ 10.1016/j.clay.2013.05.002.spa
dc.relation.references[18] H. Hatami, A. Fotovat, A. Halajnia, Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution, Appl. Clay Sci. 152 (2017) 333e341, https://doi.org/10.1016/ j.clay.2017.11.032.spa
dc.relation.references[19] E.M. Seftel, R.G. Ciocarlan, B. Michielsen, V. Meynen, S. Mullens, P. Cool, Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides, Appl. Clay Sci. 165 (2018) 234e246, https:// doi.org/10.1016/j.clay.2018.08.018.spa
dc.relation.references[20] A. Elhalil, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, R. Elmoubarki, H. Tounsadi, M. Abdennouri, N. Barka, Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants, J. Sci. Adv. Mater. Dev. 3 (2018) 188e195, https://doi.org/10.1016/j.jsamd.2018.03.005.spa
dc.relation.references[21] E.H. Mourid, M. Lakraimi, L. Benaziz, E.H. Elkhattabi, A. Legrouri, Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide, Appl. Clay Sci. 168 (2018) 87e95, https://doi.org/ 10.1016/j.clay.2018.11.005spa
dc.relation.references[22] T. Xiong, X. Yuan, X. Wang, Z. Wu, L. Jiang, L. Leng, K. Xi, X. Cao, G. Zeng, Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite, Chem. Eng. J. 366 (2019) 83e91, https://doi.org/10.1016/j.cej.2019.02.069.spa
dc.relation.references[23] I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259 (2012) 650e656, https://doi.org/10.1016/j.apsusc.2012.07.092.spa
dc.relation.references[24] F.P. De Sa, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3), Chem. Eng. J. 215e216 (2013) 122e127, https://doi.org/10.1016/j.cej.2012.11.024.spa
dc.relation.references[25] F. Mohamed, M.R. Abukhadra, M. Shaban, M, Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties, Sci. Total Environ. 640e641 (2018) 352e363, https://doi.org/ 10.1016/j.scitotenv.2018.05.316.spa
dc.relation.references[26] L. Cao, J. Guo, J. Tian, Y. Xu, M. Hu, M. Wang, J. Fan, Preparation of Ca/AlLayered Double Hydroxide and the influence of their structure on early strength of cement, Construct. Build. Mater. 184 (2018) 203e214, https:// doi.org/10.1016/j.conbuildmat.2018.06.186.spa
dc.relation.references[27] B. Li, J. He, D.G. Evans, X. Duan, Morphology, and size control of Ni-Al layered double hydroxides using chitosan as a template, J. Phys. Chem. Solid. 67 (2006) 1067e1070, https://doi.org/10.1016/j.jpcs.2006.01.027.spa
dc.relation.references[28] L. Cocheci, L. Lupa, M. Gheju, A. Golban, R. Lazau, R. Pode, Zn-Al-CO 3 layered double hydroxides prepared from a waste of hot-dip galvanizing process, B.S. Marques et al. / Journal of Alloys and Compounds 838 (2020) 155628 11 Clean Technol, Environ. Pol. 20 (2018) 1105e1112, https://doi.org/10.1007/ s10098-018-1533-3.spa
dc.relation.references[29] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard Mater. 149 (2007) 269e274, https://doi.org/10.1016/j.jhazmat.2007.03.074.spa
dc.relation.references[30] G.L. Dotto, N.P.G. Salau, J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 53e76, https://doi.org/10.1007/978- 3-319-58136-1_3.spa
dc.relation.references[31] J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, G.L. Dotto, Adsorption isotherms in liquid phase: experimental, modeling, and interpretations, in: A. BonillaPetriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Pro- cesses for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319-58136-1_ 2.spa
dc.relation.references[32] A. Bonilla-Petriciolet, D. Mendoza-Castillo, G.L. Dotto, J.C. Duran-Valle, Adsorption in water treatment, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019, pp. 1e21, https://doi.org/10.1016/B978-0-12-409547-2.14390-2.spa
dc.relation.references[33] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067e1080, https://doi.org/ 10.1016/j.molliq.2016.09.032.spa
dc.relation.references[34] C.H. Wu, Y.P. Chang, S.Y. Chen, D.M. Liu, C.T. Yu, B.L. Pen, Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high-temperature CO2 adsorption, J. Nanosci. Nanotechnol. 10 (2010) 4716e4720, https://doi.org/ 10.1166/jnn.2010.1708.spa
dc.relation.references[35] J. Olanrewaju, B.L. Newalkar, C. Mancino, S. Komarneni, Simplified synthesis of nitrate form of layered double hydroxide, Mater. Lett. 45 (2000) 307e310, https://doi.org/10.1016/S0167-577X(00)00123-3.spa
dc.relation.references[36] A.A.E. Sakr, T. Zaki, O. Saber, S.A. Hassan, A.K. Aboul-Gheit, S. Faramawy, Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas, J. Taiwan Inst. Chem. Eng. 44 (2013) 957e962, https://doi.org/10.1016/j.jtice.2013.02.003spa
dc.relation.references[37] M.V. Bukhtiyarova, A review on the effect of synthesis conditions on the formation of layered double hydroxides, J. Solid State Chem. 269 (2018) 494e506, https://doi.org/10.1016/j.jssc.2018.10.018.spa
dc.relation.references[38] H. Lu, J. Chen, Q. Tian, Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles, J. Colloid Interface Sci. 513 (2018) 342e348, https://doi.org/ 10.1016/j.jcis.2017.11.046.spa
dc.relation.references[39] M. Hu, X. Yan, X. Hu, R. Feng, M. Zhou, High-capacity adsorption of benzotriazole from aqueous solution by calcined Zn-Al layered double hydroxides, Colloid, Surf. A: Physicochem. Eng. Asp. 540 (2018) 207e214, https://doi.org/ 10.1016/j.colsurfa.2018.01.009.spa
dc.relation.references[40] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051e1069, https://doi.org/10.1515/pac-2014- 1117spa
dc.relation.references[41] N. Baig, S.M. Ihsanullah, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: a review, J. Environ. Manag. 244 (2018) 370e382, https://doi.org/10.1016/j.jenvman.2019.05.047.spa
dc.relation.references[42] A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz, Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 300 (2006) 498e503, https://doi.org/10.1016/j.jcis.2006.04.054.spa
dc.relation.references[43] K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res. 42 (2008) 1343e1368, https:// doi.org/10.1016/j.watres.2007.10.043.spa
dc.relation.references[44] C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci. 47 (1973), https://doi.org/ 10.1007/s41193-016-0111-5, 775-765.spa
dc.relation.references[45] E.L. Kochany, Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction, Chemosphere 24 (1992) 1369e1380, https://doi.org/10.1016/0045-6535(92)90060-5.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal