Show simple item record

dc.creatorDe O. Salomón, Yamil L.
dc.creatorGeorgin, Jordana
dc.creatorDison S.P., Franco
dc.creatorNetto, Matias S.
dc.creatorGrass, Patricia
dc.creatorPiccilli, Daniel G.A.
dc.creatorOliveira, Marcos L.S
dc.creatorDotto, Guilherme L.
dc.date.accessioned2020-06-02T16:36:01Z
dc.date.available2020-06-02T16:36:01Z
dc.date.issued2020-05-10
dc.identifier.urihttps://hdl.handle.net/11323/6322
dc.description.abstractThe application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat colored effluents containing the dye methyl violet 2B (MV2B) using batch and fixed-bed operation modes. The new biosorbent, so-called powdered pecan pericarp (PPP), was characterized by functional groups related to cellulose, lignin, and hemicellulose. In addition, the material was composed of particles with different sizes, amorphous structure, and rugous surface. The best pH for MV2B biosorption on the PPP was 8.5. The kinetic profile was better described by the general order model, being the equilibrium rapidly reached in the first 5 min for different initial concentrations MV2B. The equilibrium curves were better described by the Langmuir model, indicating homogenous biosorption. The maximum biosorption capacity of 642 mg g−1 was reached at 328 K. Biosorption was favorable and endothermic. PPP has removed 94.1% of color in the simulated effluent. The fixed-bed assays revealed that the column packed with PPP could operate during 52.5 h with a height of 25 cm. The Thomas, Bohart-Adams, and Yoon-Nelson models were suitable to describe the dynamic curves. Therefore, PPP can be used as an efficient and fast biosorbent to treat textile effluents containing MV2B dye.spa
dc.language.isoengspa
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectPecan nut pericarpspa
dc.subjectMethyl violet 2Bspa
dc.subjectBiosorptionspa
dc.subjectSimulated effluentspa
dc.subjectFixed bed operationspa
dc.titlePowdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operationsspa
dc.typeArticlespa
dcterms.references[1] V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malyiya, Decolorization of mixture of dyes: a critical review, Global J. Environ. Sci. Manage. 1 (2015) 71– 94.spa
dcterms.references[2] T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate, Water Air Soil Pollut. 218 (2011) 499–515.spa
dcterms.references[3] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322–333.spa
dcterms.references[4] G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ. Manage. 171 (2016) 1–10.spa
dcterms.references[5] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage. 182 (2016) 351–366.spa
dcterms.references[6] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol. Environ. Health Sci. 1 (2009) 34–37.spa
dcterms.references[7] G. L. Dotto, S.K. Sharma, L.A.A. Pinto, Biosorption of organic dyes: research opportunities and challenges. In: Sanjay K. Sharma (Eds.), (Org.). Green Chemistry for Dyes Removal from Wastewater, John Wiley & Sons, Inc., New York, 2015.spa
dcterms.references[8] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017.spa
dcterms.references[9] X. Pang, L. Sellaoui, D.S.P. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101.spa
dcterms.references[10] M. Xu, G. McKay, Removal of heavy metals, lead, cadmium, and zinc, using adsorption processes by cost-effective adsorbents, in: A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017spa
dcterms.references[11] A.V.B. De Oliveira, T.M. Rizzato, B.C.B. Barros, S.L. Fávaro, W. Caetano, N. Hioka, V.R. Batistela, Physicochemical modifications of sugarcane and cassava agroindustrial wastes for applications as biosorbents, Bioresour. Technol. Rep. 7 (2019) 100294.spa
dcterms.references[12] S. Shakoor, A. Nasar, Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste, Ground. Sust. Develop. 7 (2018) 30–38.spa
dcterms.references[13] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703.spa
dcterms.references[14] M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.M. Shakeel Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep. 3 (2018) 127–137.spa
dcterms.references[15] C.D.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguez, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. 21 (2019) 4690–4702.spa
dcterms.references[16] I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq. 230 (2017) 686–695.spa
dcterms.references[17] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65.spa
dcterms.references[18] V. Hernández-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A. Montes-Morán, M.A. Pérez-Cruz, Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, J. Anal. Appl. Pyro. 92 (2011) 143–151.spa
dcterms.references[19] M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, J. Ind. Eng. Chem. 19 (2013) 756–763.spa
dcterms.references[20] M. Suzuki, Adsorption engineering, Kodansha, Tokyo, 1990.spa
dcterms.references[21] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. 24 (1898) 1–39.spa
dcterms.references[22] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. IChemE 76 (1998) 332–340.spa
dcterms.references[23] Y. Liu, H. Xu, J.H. Tay, Derivation of a general adsorption isotherm model, J. Environ. Eng. 131 (2005) 1466–1468.spa
dcterms.references[24] M. Avrami, Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939) 1103–1112.spa
dcterms.references[25] H. Freundlich, Over the adsorption in solution, Z. Physic. Chem. A. 57 (1906) 358–471.spa
dcterms.references[26] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.spa
dcterms.references[27] A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci. 194 (1997) 154–165.spa
dcterms.references[28] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434.spa
dcterms.references[29] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc. 42 (1920) 523–544.spa
dcterms.references[30] H.C. Thomas, Heterogeneous Ion Exchange in a Flowing System, J. Am. Chem. Soc. 66 (1944) 1664–1666.spa
dcterms.references[31] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hygiene Assoc. J. 45 (1984) 509–516.spa
dcterms.references[32] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Ads. Sci. Technol. 19 (2001) 25–43.spa
dcterms.references[33] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Res. Ind. 12 (2015) 8–24.spa
dcterms.references[34] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935.spa
dcterms.references[35] L.Y. Sun, H.B. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, Structural changes of bamboo cellulose in formic acid, Bioresour. 3 (2008) 297–315.spa
dcterms.references[36] B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energ. Inst. 90 (2017) 825–837.spa
dcterms.references[37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621.spa
dcterms.references[38] J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies, Bioresour. Technol. 245 (2017) 656–664.spa
dcterms.references[39] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination 265 (2011) 126–134.spa
dcterms.references[40] J. Georgin, B.S. Marques, J.S. Salla, E.L. Foletto, D. Allasia, G.L. Dotto, Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent, Environ. Sci. Pollut. Res. 25 (2017) 6429–6442.spa
dcterms.references[41] J. Georgin, D.S.P. Franco, F.C. Drumm, P. Grassi, M. Schadeck Netto, D. Allasia, G. L. Dotto, Paddle cactus (Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet, Chem. Eng. Commun. (2019) 1– 12 (In press).spa
dcterms.references[42] S. Lairini, K.E. Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq, The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies, J. Mater. Environ. Sci. 8 (2017) 3252–3261.spa
dcterms.references[43] M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat, Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study, Res. Efficient Technol. 3 (2017) 71–77.spa
dcterms.references[44] A. Bazzo, M.A. Adebayo, S.L.P. Dias, E.C. Lima, J.C.P. Vaghetti, E.R. Oliveira, A.J.B. Leite, F.A. Pavan, Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions, Des. Water Treat. 57 (2016) 15873–15888.spa
dcterms.references[45] G. Tian, W. Wang, Y. Kang, A. Wang, Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet, J. Environ. Sci. 41 (2016) 33–43.spa
dcterms.references[46] G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym. 98 (2013) 358–365.spa
dcterms.references[47] S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution, Des. Water Treat. 54 (2014) 2041–2054.spa
dcterms.references[48] F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, J. Environ. Chem. Eng. 2 (2014) 230–238.spa
dcterms.references[49] M. Dutta, J.K. Basu, Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet, Int. J. Environ. Sci. Technol. 11 (2014) 87–96.spa
dcterms.references[50] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater. 125 (2005) 211–220.spa
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi.org/10.1016/j.apt.2020.05.004


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal