Mostrar el registro sencillo del ítem

dc.contributor.authorDe O. Salomón, Yamil L.spa
dc.contributor.authorGeorgin, Jordanaspa
dc.contributor.authorDison S.P., Francospa
dc.contributor.authorNetto, Matias S.spa
dc.contributor.authorGrass, Patriciaspa
dc.contributor.authorPiccilli, Daniel G.A.spa
dc.contributor.authorOliveira, Marcos L.Sspa
dc.contributor.authorDotto, Guilherme L.spa
dc.date.accessioned2020-06-02T16:36:01Z
dc.date.available2020-06-02T16:36:01Z
dc.date.issued2020-05-10
dc.identifier.urihttps://hdl.handle.net/11323/6322spa
dc.description.abstractThe application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat colored effluents containing the dye methyl violet 2B (MV2B) using batch and fixed-bed operation modes. The new biosorbent, so-called powdered pecan pericarp (PPP), was characterized by functional groups related to cellulose, lignin, and hemicellulose. In addition, the material was composed of particles with different sizes, amorphous structure, and rugous surface. The best pH for MV2B biosorption on the PPP was 8.5. The kinetic profile was better described by the general order model, being the equilibrium rapidly reached in the first 5 min for different initial concentrations MV2B. The equilibrium curves were better described by the Langmuir model, indicating homogenous biosorption. The maximum biosorption capacity of 642 mg g−1 was reached at 328 K. Biosorption was favorable and endothermic. PPP has removed 94.1% of color in the simulated effluent. The fixed-bed assays revealed that the column packed with PPP could operate during 52.5 h with a height of 25 cm. The Thomas, Bohart-Adams, and Yoon-Nelson models were suitable to describe the dynamic curves. Therefore, PPP can be used as an efficient and fast biosorbent to treat textile effluents containing MV2B dye.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectPecan nut pericarpspa
dc.subjectMethyl violet 2Bspa
dc.subjectBiosorptionspa
dc.subjectSimulated effluentspa
dc.subjectFixed bed operationspa
dc.titlePowdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operationsspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi.org/10.1016/j.apt.2020.05.004spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malyiya, Decolorization of mixture of dyes: a critical review, Global J. Environ. Sci. Manage. 1 (2015) 71– 94.spa
dc.relation.references[2] T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate, Water Air Soil Pollut. 218 (2011) 499–515.spa
dc.relation.references[3] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322–333.spa
dc.relation.references[4] G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ. Manage. 171 (2016) 1–10.spa
dc.relation.references[5] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage. 182 (2016) 351–366.spa
dc.relation.references[6] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol. Environ. Health Sci. 1 (2009) 34–37.spa
dc.relation.references[7] G. L. Dotto, S.K. Sharma, L.A.A. Pinto, Biosorption of organic dyes: research opportunities and challenges. In: Sanjay K. Sharma (Eds.), (Org.). Green Chemistry for Dyes Removal from Wastewater, John Wiley & Sons, Inc., New York, 2015.spa
dc.relation.references[8] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017.spa
dc.relation.references[9] X. Pang, L. Sellaoui, D.S.P. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101.spa
dc.relation.references[10] M. Xu, G. McKay, Removal of heavy metals, lead, cadmium, and zinc, using adsorption processes by cost-effective adsorbents, in: A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017spa
dc.relation.references[11] A.V.B. De Oliveira, T.M. Rizzato, B.C.B. Barros, S.L. Fávaro, W. Caetano, N. Hioka, V.R. Batistela, Physicochemical modifications of sugarcane and cassava agroindustrial wastes for applications as biosorbents, Bioresour. Technol. Rep. 7 (2019) 100294.spa
dc.relation.references[12] S. Shakoor, A. Nasar, Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste, Ground. Sust. Develop. 7 (2018) 30–38.spa
dc.relation.references[13] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703.spa
dc.relation.references[14] M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.M. Shakeel Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep. 3 (2018) 127–137.spa
dc.relation.references[15] C.D.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguez, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. 21 (2019) 4690–4702.spa
dc.relation.references[16] I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq. 230 (2017) 686–695.spa
dc.relation.references[17] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65.spa
dc.relation.references[18] V. Hernández-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A. Montes-Morán, M.A. Pérez-Cruz, Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, J. Anal. Appl. Pyro. 92 (2011) 143–151.spa
dc.relation.references[19] M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, J. Ind. Eng. Chem. 19 (2013) 756–763.spa
dc.relation.references[20] M. Suzuki, Adsorption engineering, Kodansha, Tokyo, 1990.spa
dc.relation.references[21] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. 24 (1898) 1–39.spa
dc.relation.references[22] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. IChemE 76 (1998) 332–340.spa
dc.relation.references[23] Y. Liu, H. Xu, J.H. Tay, Derivation of a general adsorption isotherm model, J. Environ. Eng. 131 (2005) 1466–1468.spa
dc.relation.references[24] M. Avrami, Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939) 1103–1112.spa
dc.relation.references[25] H. Freundlich, Over the adsorption in solution, Z. Physic. Chem. A. 57 (1906) 358–471.spa
dc.relation.references[26] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.spa
dc.relation.references[27] A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci. 194 (1997) 154–165.spa
dc.relation.references[28] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434.spa
dc.relation.references[29] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc. 42 (1920) 523–544.spa
dc.relation.references[30] H.C. Thomas, Heterogeneous Ion Exchange in a Flowing System, J. Am. Chem. Soc. 66 (1944) 1664–1666.spa
dc.relation.references[31] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hygiene Assoc. J. 45 (1984) 509–516.spa
dc.relation.references[32] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Ads. Sci. Technol. 19 (2001) 25–43.spa
dc.relation.references[33] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Res. Ind. 12 (2015) 8–24.spa
dc.relation.references[34] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935.spa
dc.relation.references[35] L.Y. Sun, H.B. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, Structural changes of bamboo cellulose in formic acid, Bioresour. 3 (2008) 297–315.spa
dc.relation.references[36] B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energ. Inst. 90 (2017) 825–837.spa
dc.relation.references[37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621.spa
dc.relation.references[38] J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies, Bioresour. Technol. 245 (2017) 656–664.spa
dc.relation.references[39] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination 265 (2011) 126–134.spa
dc.relation.references[40] J. Georgin, B.S. Marques, J.S. Salla, E.L. Foletto, D. Allasia, G.L. Dotto, Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent, Environ. Sci. Pollut. Res. 25 (2017) 6429–6442.spa
dc.relation.references[41] J. Georgin, D.S.P. Franco, F.C. Drumm, P. Grassi, M. Schadeck Netto, D. Allasia, G. L. Dotto, Paddle cactus (Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet, Chem. Eng. Commun. (2019) 1– 12 (In press).spa
dc.relation.references[42] S. Lairini, K.E. Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq, The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies, J. Mater. Environ. Sci. 8 (2017) 3252–3261.spa
dc.relation.references[43] M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat, Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study, Res. Efficient Technol. 3 (2017) 71–77.spa
dc.relation.references[44] A. Bazzo, M.A. Adebayo, S.L.P. Dias, E.C. Lima, J.C.P. Vaghetti, E.R. Oliveira, A.J.B. Leite, F.A. Pavan, Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions, Des. Water Treat. 57 (2016) 15873–15888.spa
dc.relation.references[45] G. Tian, W. Wang, Y. Kang, A. Wang, Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet, J. Environ. Sci. 41 (2016) 33–43.spa
dc.relation.references[46] G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym. 98 (2013) 358–365.spa
dc.relation.references[47] S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution, Des. Water Treat. 54 (2014) 2041–2054.spa
dc.relation.references[48] F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, J. Environ. Chem. Eng. 2 (2014) 230–238.spa
dc.relation.references[49] M. Dutta, J.K. Basu, Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet, Int. J. Environ. Sci. Technol. 11 (2014) 87–96.spa
dc.relation.references[50] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater. 125 (2005) 211–220.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal