dc.creator | De O. Salomón, Yamil L. | |
dc.creator | Georgin, Jordana | |
dc.creator | Dison S.P., Franco | |
dc.creator | Netto, Matias S. | |
dc.creator | Grass, Patricia | |
dc.creator | Piccilli, Daniel G.A. | |
dc.creator | Oliveira, Marcos L.S | |
dc.creator | Dotto, Guilherme L. | |
dc.date.accessioned | 2020-06-02T16:36:01Z | |
dc.date.available | 2020-06-02T16:36:01Z | |
dc.date.issued | 2020-05-10 | |
dc.identifier.uri | https://hdl.handle.net/11323/6322 | |
dc.description.abstract | The application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat colored effluents containing the dye methyl violet 2B (MV2B) using batch and fixed-bed operation modes. The new biosorbent, so-called powdered pecan pericarp (PPP), was characterized by functional groups related to cellulose, lignin, and hemicellulose. In addition, the material was composed of particles with different sizes, amorphous structure, and rugous surface. The best pH for MV2B biosorption on the PPP was 8.5. The kinetic profile was better described by the general order model, being the equilibrium rapidly reached in the first 5 min for different initial concentrations MV2B. The equilibrium curves were better described by the Langmuir model, indicating homogenous biosorption. The maximum biosorption capacity of 642 mg g−1 was reached at 328 K. Biosorption was favorable and endothermic. PPP has removed 94.1% of color in the simulated effluent. The fixed-bed assays revealed that the column packed with PPP could operate during 52.5 h with a height of 25 cm. The Thomas, Bohart-Adams, and Yoon-Nelson models were suitable to describe the dynamic curves. Therefore, PPP can be used as an efficient and fast biosorbent to treat textile effluents containing MV2B dye. | spa |
dc.language.iso | eng | spa |
dc.publisher | Universidad de la Costa | spa |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | Pecan nut pericarp | spa |
dc.subject | Methyl violet 2B | spa |
dc.subject | Biosorption | spa |
dc.subject | Simulated effluent | spa |
dc.subject | Fixed bed operation | spa |
dc.title | Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations | spa |
dc.type | Article | spa |
dcterms.references | [1] V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malyiya, Decolorization of
mixture of dyes: a critical review, Global J. Environ. Sci. Manage. 1 (2015) 71–
94. | spa |
dcterms.references | [2] T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal
of methylene blue from aqueous solution by adsorption onto pine cone
biomass of Pinus radiate, Water Air Soil Pollut. 218 (2011) 499–515. | spa |
dcterms.references | [3] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye
adsorption by peat in single and binary component systems, J. Colloid Interface
Sci. 280 (2004) 322–333. | spa |
dcterms.references | [4] G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on
raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ.
Manage. 171 (2016) 1–10. | spa |
dcterms.references | [5] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical
review on textile wastewater treatments: possible approaches, J. Environ.
Manage. 182 (2016) 351–366. | spa |
dcterms.references | [6] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of
wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol.
Environ. Health Sci. 1 (2009) 34–37. | spa |
dcterms.references | [7] G. L. Dotto, S.K. Sharma, L.A.A. Pinto, Biosorption of organic dyes: research
opportunities and challenges. In: Sanjay K. Sharma (Eds.), (Org.). Green
Chemistry for Dyes Removal from Wastewater, John Wiley & Sons, Inc., New
York, 2015. | spa |
dcterms.references | [8] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption
Processes for Water Treatment and Purification, Springer International
Publishing, Berlin, 2017. | spa |
dcterms.references | [9] X. Pang, L. Sellaoui, D.S.P. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H.
Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal
violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark
and palm cactus: Experimental study and theoretical modeling via monolayer
and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101. | spa |
dcterms.references | [10] M. Xu, G. McKay, Removal of heavy metals, lead, cadmium, and zinc, using
adsorption processes by cost-effective adsorbents, in: A. Bonilla-Petriciolet, D.
I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption Processes for Water
Treatment and Purification, Springer International Publishing, Berlin, 2017 | spa |
dcterms.references | [11] A.V.B. De Oliveira, T.M. Rizzato, B.C.B. Barros, S.L. Fávaro, W. Caetano, N. Hioka,
V.R. Batistela, Physicochemical modifications of sugarcane and cassava agroindustrial wastes for applications as biosorbents, Bioresour. Technol. Rep. 7
(2019) 100294. | spa |
dcterms.references | [12] S. Shakoor, A. Nasar, Adsorptive decontamination of synthetic wastewater
containing crystal violet dye by employing Terminalia arjuna sawdust waste,
Ground. Sust. Develop. 7 (2018) 30–38. | spa |
dcterms.references | [13] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of
Araucaria angustifolia bark as adsorbent to remove gentian violet dye from
aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703. | spa |
dcterms.references | [14] M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.M. Shakeel
Iqubal, Use of banana trunk waste as activated carbon in scavenging
methylene blue dye: Kinetic, thermodynamic, and isotherm studies,
Bioresour. Technol. Rep. 3 (2018) 127–137. | spa |
dcterms.references | [15] C.D.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F.
Caicedo Chaguez, F.M. Machado, Kinetic, equilibrium, and thermodynamic
studies on the adsorption of ciprofloxacin by activated carbon produced
from Jeriva (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. 21 (2019)
4690–4702. | spa |
dcterms.references | [16] I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of
activated carbons from pecan nutshell and their application in the antagonistic
adsorption of heavy metal ions, J. Mol. Liq. 230 (2017) 686–695. | spa |
dcterms.references | [17] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto,
New biochar from pecan nutshells as an alternative adsorbent for removing
reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. | spa |
dcterms.references | [18] V. Hernández-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A.
Montes-Morán, M.A. Pérez-Cruz, Role of the pericarp of Carya illinoinensis as
biosorbent and as precursor of activated carbon for the removal of lead and
acid blue 25 in aqueous solutions, J. Anal. Appl. Pyro. 92 (2011) 143–151. | spa |
dcterms.references | [19] M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive
Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle
loaded on activated carbon, J. Ind. Eng. Chem. 19 (2013) 756–763. | spa |
dcterms.references | [20] M. Suzuki, Adsorption engineering, Kodansha, Tokyo, 1990. | spa |
dcterms.references | [21] S. Lagergren, About the theory of so-called adsorption of soluble substances, K.
Sven. Vetensk. 24 (1898) 1–39. | spa |
dcterms.references | [22] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to
pollutant removal on various sorbents, Trans. IChemE 76 (1998) 332–340. | spa |
dcterms.references | [23] Y. Liu, H. Xu, J.H. Tay, Derivation of a general adsorption isotherm model, J.
Environ. Eng. 131 (2005) 1466–1468. | spa |
dcterms.references | [24] M. Avrami, Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939)
1103–1112. | spa |
dcterms.references | [25] H. Freundlich, Over the adsorption in solution, Z. Physic. Chem. A. 57 (1906)
358–471. | spa |
dcterms.references | [26] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and
platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. | spa |
dcterms.references | [27] A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some
aromatic pollutants from dilute aqueous solutions on activated carbon at
different temperatures, J. Colloid Interface Sci. 194 (1997) 154–165. | spa |
dcterms.references | [28] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-piraján, I. Anastopoulos, A
critical review of the estimation of the thermodynamic parameters on
adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof
equation for calculation of thermodynamic parameters of adsorption, J. Mol.
Liq. 273 (2019) 425–434. | spa |
dcterms.references | [29] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect
to chlorine, J. Am. Chem. Soc. 42 (1920) 523–544. | spa |
dcterms.references | [30] H.C. Thomas, Heterogeneous Ion Exchange in a Flowing System, J. Am. Chem.
Soc. 66 (1944) 1664–1666. | spa |
dcterms.references | [31] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical
model for respirator cartridge service life, Am. Ind. Hygiene Assoc. J. 45 (1984)
509–516. | spa |
dcterms.references | [32] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a
biosorption column, Ads. Sci. Technol. 19 (2001) 25–43. | spa |
dcterms.references | [33] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as
adsorbents, Water Res. Ind. 12 (2015) 8–24. | spa |
dcterms.references | [34] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the
physicochemical treatments of rice husk for production of advanced
materials, Chem. Eng. J. 264 (2015) 899–935. | spa |
dcterms.references | [35] L.Y. Sun, H.B. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, Structural changes of
bamboo cellulose in formic acid, Bioresour. 3 (2008) 297–315. | spa |
dcterms.references | [36] B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins
using thermogravimetric analysis, J. Energ. Inst. 90 (2017) 825–837. | spa |
dcterms.references | [37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic
dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018)
1612–1621. | spa |
dcterms.references | [38] J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan,
Assessment of fish scales waste as a low cost and eco-friendly adsorbent for
removal of an azo dye: Equilibrium, kinetic and thermodynamic studies,
Bioresour. Technol. 245 (2017) 656–664. | spa |
dcterms.references | [39] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from
aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination
265 (2011) 126–134. | spa |
dcterms.references | [40] J. Georgin, B.S. Marques, J.S. Salla, E.L. Foletto, D. Allasia, G.L. Dotto, Removal of
Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado
shells (Persea americana) as adsorbent, Environ. Sci. Pollut. Res. 25 (2017)
6429–6442. | spa |
dcterms.references | [41] J. Georgin, D.S.P. Franco, F.C. Drumm, P. Grassi, M. Schadeck Netto, D. Allasia, G.
L. Dotto, Paddle cactus (Tacinga palmadora) as potential low-cost adsorbent to
treat textile effluents containing crystal violet, Chem. Eng. Commun. (2019) 1–
12 (In press). | spa |
dcterms.references | [42] S. Lairini, K.E. Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq, The
adsorption of Crystal violet from aqueous solution by using potato peels
(Solanum tuberosum): equilibrium and kinetic studies, J. Mater. Environ. Sci. 8
(2017) 3252–3261. | spa |
dcterms.references | [43] M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat, Removal of Crystal Violet dye
from aqueous solution using water hyacinth: Equilibrium, kinetics and
thermodynamics study, Res. Efficient Technol. 3 (2017) 71–77. | spa |
dcterms.references | [44] A. Bazzo, M.A. Adebayo, S.L.P. Dias, E.C. Lima, J.C.P. Vaghetti, E.R. Oliveira, A.J.B.
Leite, F.A. Pavan, Avocado seed powder: characterization and its application
for crystal violet dye removal from aqueous solutions, Des. Water Treat. 57
(2016) 15873–15888. | spa |
dcterms.references | [45] G. Tian, W. Wang, Y. Kang, A. Wang, Ammonium sulfide-assisted hydrothermal
activation of palygorskite for enhanced adsorption of methyl violet, J. Environ.
Sci. 41 (2016) 33–43. | spa |
dcterms.references | [46] G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis
of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal
violet, Carbohydr. Polym. 98 (2013) 358–365. | spa |
dcterms.references | [47] S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf
(Ananas comosus) powder as a biosorbent for the removal of crystal violet from
aqueous solution, Des. Water Treat. 54 (2014) 2041–2054. | spa |
dcterms.references | [48] F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias,
Formosa papaya seed powder (FPSP): Preparation, characterization and
application as an alternative adsorbent for the removal of crystal violet from
aqueous phase, J. Environ. Chem. Eng. 2 (2014) 230–238. | spa |
dcterms.references | [49] M. Dutta, J.K. Basu, Fixed-bed column study for the adsorptive removal of acid
fuchsin using carbon-alumina composite pellet, Int. J. Environ. Sci. Technol. 11
(2014) 87–96. | spa |
dcterms.references | [50] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption
using treated granular activated carbon: batch and column studies, J. Hazard.
Mater. 125 (2005) 211–220. | spa |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.doi | doi.org/10.1016/j.apt.2020.05.004 | |