Mostrar el registro sencillo del ítem

dc.contributor.authorQuintana, Yamiletspa
dc.contributor.authorRamírez, Williamspa
dc.contributor.authorUrielesspa
dc.date.accessioned2020-06-30T22:10:57Z
dc.date.available2020-06-30T22:10:57Z
dc.date.issued2020
dc.identifier.issn1935-0090spa
dc.identifier.issn2325-0399spa
dc.identifier.urihttps://hdl.handle.net/11323/6443spa
dc.description.abstractThis paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices.spa
dc.language.isoeng
dc.publisherApplied Mathematics and Information Sciencesspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectEuler polynomialsspa
dc.subjectEuler matrixspa
dc.subjectGeneralized Euler matrixspa
dc.subjectGeneralized Pascal matrixspa
dc.subjectFibonacci matrixspa
dc.subjectLucas matrixspa
dc.titleEuler matrices and their algebraic properties revisitedspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttp://dx.doi.org/10.18576/amisspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer, London UK, 51-63, (2014).spa
dc.relation.references[2] G. S. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly, 100, 372-376 (1993).spa
dc.relation.references[3] G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl., 329, 49-59 (2001).spa
dc.relation.references[4] G.-S. Cheon and J.-S. Kim, Factorial Stirling matrix and related combinatorial sequences, Linear Algebra Appl., 357, 247-258 (2002).spa
dc.relation.references[5] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Boston US, 204-219, (1974).spa
dc.relation.references[6] T. Ernst, A Comprehensive Treatment of q-Calculus, Birkh¨auser, London UK, 97-167, (2012).spa
dc.relation.references[7] B.-N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272, 251-257 (2014).spa
dc.relation.references[8] Y. He, S. Araci and H. M. Srivastava, Some new formulas for the products of the Apostol type polynomials, Adv. Differ. Equ., 2016, 1-18 (2016).spa
dc.relation.references[9] Y. He, S. Araci, H. M. Srivastava and M. Acikg¨oz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials. Appl. Math. Comput., 262, 31-41 (2015).spa
dc.relation.references[10] P. Hern´andez-Llanos, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math., 68, 203-225 (2015).spa
dc.relation.references[11] G. I. Infante, J. L. Ram´ırez and A. S¸ahin, Some results on q-analogue of the Bernoulli, Euler and Fibonacci matrices, Math. Rep. (Bucur.), 19(69), 399-417 (2017).spa
dc.relation.references[12] D. S. Kim and T. Kim, Some identities of q-Euler polynomials arising from q-umbral calculus, J. Inequal. Appl., 2014:1, 1-12 (2014).spa
dc.relation.references[13] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 40, 203-211 (2002).spa
dc.relation.references[14] G.-Y. Lee, J.-S. Kim and S.-H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 130, 527-534 (2003).spa
dc.relation.references[15] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308, 290-302 (2005).spa
dc.relation.references[16] N. E. Nørlund, Vorlesungen ¨uber Differenzenrechnung, Springer-Verlag, Berlin DE, 120-162, (1924).spa
dc.relation.references[17] A. Pint´er and H. M. Srivastava, Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math., 85, 483-495 (2013).spa
dc.relation.references[18] Y. Quintana, W. Ram´ırez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55, 1-29 (2018).spa
dc.relation.references[19] J. Riordan, Combinatorial Identities, John Wiley & Sons, Inc., New York US, 99-127, (1968).spa
dc.relation.references[20] H. M. Srivastava, M. A. Boutiche and M. Rahmani, A class of Frobenius-type Eulerian polynomials, Rocky Mountain J. Math., 48, 1003-1013 (2018).spa
dc.relation.references[21] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, London UK, 76-140, (2012).spa
dc.relation.references[22] H. M. Srivastava, I. Kucuko˘glu and Y. Simsek, Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, J. Number Theory, 181, 117-146 (2017).spa
dc.relation.references[23] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., West Sussex UK, 384-402, (1984).spa
dc.relation.references[24] H. M. Srivastava, M. Masjed-Jamei and M. Reza Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inform. Sci., 12, 907-916 (2018).spa
dc.relation.references[25] H. M. Srivastava, M. A. Ozarslan and C. Kaanuglu, Some ¨ generalized Lagrange-based Apostol-Bernoulli, ApostolEuler and Apostol-Genocchi polynomials, Russian J. Math. Phys., 20, 110-120 (2013).spa
dc.relation.references[26] H. M. Srivastava, M. A. Ozarslan and B. Yilmaz, Some ¨families of differential equations associated with the Hermitebased Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28, 695-708 (2014).spa
dc.relation.references[27] H. M. Srivastava and A. Pint´er, Remarks on some ´relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17, 375-380 (2004).spa
dc.relation.references[28] P. Stanimirovi´c, J. Nikolov and I. Stanimirovi´c, A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math., 156, 2606-2619 (2008).spa
dc.relation.references[29] Z. Z. Zhang, The linear algebra of generalized Pascal matrix, Linear Algebra Appl., 250, 51-60 (1997).spa
dc.relation.references[30] Y. Yang and C. Micek, Generalized Pascal function matrix and its applications, Linear Algebra Appl., 423, 230-245 (2007).spa
dc.relation.references[31] Z. Z. Zhang and M. X. Liu, An extension of generalized Pascal matrix and its algebraic properties, Linear Algebra Appl., 271, 169-177 (1998).spa
dc.relation.references[32] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math., 154, 1622-1632 (2006).spa
dc.relation.references[33] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math., 38, 457- 465 (2007).spa
dc.relation.references[34] D. Zheng, q-analogue of the Pascal matrix, Ars Combin., 87, 321-336 (2008).spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal