Mostrar el registro sencillo del ítem

dc.contributor.authorSivaramakrishnan, N.spa
dc.contributor.authorSubramaniyaswamy, V.spa
dc.contributor.authoramelec, viloriaspa
dc.contributor.authorVijayakumar, V.spa
dc.contributor.authorSenthilselvan, N.spa
dc.date.accessioned2020-07-04T17:00:32Z
dc.date.available2020-07-04T17:00:32Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/6456spa
dc.description.abstractA recommender system plays a vital role in information filtering and retrieval, and its application is omnipresent in many domains. There are some drawbacks such as the cold-start and the data sparsity problems which affect the performance of the recommender model. Various studies help with drastically improving the performance of recommender systems via unique methods, such as the traditional way of performing matrix factorization (MF) and also applying deep learning (DL) techniques in recent years. By using DL in the recommender system, we can overcome the difficulties of collaborative filtering. DL now focuses mainly on modeling content descriptions, but those models ignore the main factor of user–item interaction. In the proposed hybrid Bayesian stacked auto-denoising encoder (HBSADE) model, it recognizes the latent interests of the user and analyzes contextual reviews that are performed through the MF method. The objective of the model is to identify the user’s point of interest, recommending products/services based on the user’s latent interests. The proposed two-stage novel hybrid deep learning-based collaborative filtering method explores the user’s point of interest, captures the communications between items and users and provides better recommendations in a personalized way. We used a multilayer neural network to manipulate the nonlinearities between the user and item communication from data. Experiments were to prove that our HBSADE outperforms existing methodologies over Amazon-b and Book-Crossing datasets.spa
dc.language.isoeng
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectDeep learningspa
dc.subjectOptimizationspa
dc.subjectSide informationspa
dc.subjectHybrid modelspa
dc.subjectRecommendation systemspa
dc.subjectCollaborative filteringspa
dc.titleA deep learning-based hybrid model for recommendation generation and rankingspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/s00521-020-04844-4(0123456789().,-volV)(0123456789(). ,- volV)spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Hu QY, Zhao ZL, Wang CD, Lai JH (2017) An item orientated recommendation algorithm from the multi-view perspective. Neurocomputing 269:261–272spa
dc.relation.references2. Hu QY, Huang L, Wang CD, Chao HY (2019) Item orientated recommendation by multi-view intact space learning with overlapping. Knowl-Based Syst 164:358–370spa
dc.relation.references3. Zhang W, Zou H, Luo L, Liu Q, Wu W, Xiao W (2016) Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing 173:979–987spa
dc.relation.references4. Logesh R, Subramaniyaswamy V, Malathi D, Sivaramakrishnan N, Vijayakumar V (2019) Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method. Neural Comput Appl. https://doi. org/10.1007/s00521-018-3891-5spa
dc.relation.references5. Balabanovic M, Shoham Y (1997) Content-based, collaborative recommendation. Commun ACM 40(3):66–72spa
dc.relation.references6. Sarwar BM, Karypis G, Konstan JA, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp 285–295spa
dc.relation.references7. Zhao ZL, Wang CD, Lai JH (2016) AUI&GIV: recommendation with asymmetric user influence and global importance value. PLoS ONE 11(2):e0147944spa
dc.relation.references8. Xue HJ, Dai X, Zhang J, Huang S, Chen J (2017) Deep matrix factorization models for recommender systems. In: IJCAI, pp 3203–3209spa
dc.relation.references9. Burke RD (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap Inter 12(4):331–370spa
dc.relation.references10. Salakhutdinov R, Mnih A (2007) Probabilistic matrix factorization. In: NIPS, pp 1257–1264spa
dc.relation.references11. Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: KDD, pp 1235–1244spa
dc.relation.references12. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408spa
dc.relation.references13. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37. https:// doi.org/10.1109/MC.2009.263spa
dc.relation.references14. Andreas M (2017) Matrix factorization techniques for recommender systems. Ph.D. thesis, The University of Aegeanspa
dc.relation.references15. Salakhutdinov R, Mnih A, Hinton G (2007) Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on machine learning, pp 791–798spa
dc.relation.references16. Gao J, Pantel P, Gamon M, He X, Deng L (2014) Modeling interestingness with deep neural networks. In: Proceedings of the conference on empirical methods natural language process, pp 2–13spa
dc.relation.references17. Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the ninth ACM international conference on web search and data mining, pp 153–162spa
dc.relation.references18. Kim D, Park C, Oh J, Lee S, Yu H (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems, pp 233–240spa
dc.relation.references19. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38spa
dc.relation.references20. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat B (2019) Evolving deep neural networks. Artificial intelligence in the age of neural networks and brain computing. Academic Press, London, pp 293–312spa
dc.relation.references21. Van den Oord A, Dieleman S, Schrauwen B (2013) Deep contentbased music recommendation. In: Advances in neural information processing systems, pp 2643–2651spa
dc.relation.references22. Bebis G, Michael G (1994) Feed-forward neural networks. IEEE Potentials 13(4):27–31spa
dc.relation.references23. Zhang W, Du Y, Yoshida T, Yang Y (2019) DeepRec: a deep neural network approach to recommendation with item embedding and weighted loss function. Inf Sci 470:121–140spa
dc.relation.references24. He X, Chua TS (2017) Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, pp 355–364spa
dc.relation.references25. Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2012) BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the conference on uncertainty in artificial intelligence, pp 452–461spa
dc.relation.references26. Krestel R, Fankhauser P, Nejdl W (2009) Latent Dirichlet allocation for tag recommendation. In: Proceedings of the third ACM conference on recommender systems, pp 61–68spa
dc.relation.references27. Ren X, Song M, Haihong E, Song J (2017) Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation. Neurocomputing 241(7):38–55spa
dc.relation.references28. He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp 173–182spa
dc.relation.references29. Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on World Wide Web, pp 111–112spa
dc.relation.references30. Wu X, Yuan X, Duan C, Wu J (2019) A novel collaborative filtering algorithm of machine learning by integrating restricted Boltzmann machine and trust information. Neural Comput Appl 31(9):4685–4692spa
dc.relation.references31. Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM international on conference on information and knowledge management, pp 811–820spa
dc.relation.references32. Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th international conference on machine learning, pp 880–887spa
dc.relation.references33. Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1235–1244spa
dc.relation.references34. Zhou W, Li J, Zhang M, Wang Y, Shah F (2018) Deep learning modeling for top-N recommendation with interests exploring. IEEE Access 6:51440–51455spa
dc.relation.references35. Viloria A, Li J, Guiliany JG, de la Hoz B (2020) Predictive model for detecting customer’s purchasing behavior using data mining. In: Proceedings of 6th international conference on big data and cloud computing challenges, pp 45–54spa
dc.relation.references36. Maind SB, Wankar P (2014) Research paper on basic of artificial neural network. Int J Recent Innov rends Comput Commun 2(1):96–100spa
dc.relation.references37. Abedini F, Menhaj MB, Keyvanpour MR (2019) An MLP-based representation of neural tensor networks for the RDF data models. Neural Comput Appl 31(2):1135–1144spa
dc.relation.references38. Hemanth DJ, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32(3):707–721spa
dc.relation.references39. Bell R, Volinsky C (2010) Matrix factorization for recommender systems. Presentation at UMBCspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal