Mostrar el registro sencillo del ítem

dc.contributor.authorBALBIS MOREJON, MILENspa
dc.contributor.authorSilva-Ortega, J Ispa
dc.contributor.authorCastro-Peña, Jspa
dc.date.accessioned2020-07-13T19:29:34Z
dc.date.available2020-07-13T19:29:34Z
dc.date.issued2020
dc.identifier.issn1757-8981spa
dc.identifier.issn1757-899Xspa
dc.identifier.urihttps://hdl.handle.net/11323/6547spa
dc.description.abstractEnergy saving measures, in the design air conditioning systems, are crucial in the development of energy schemes with rational energy consumption. Traditionally, integrated buildings systems have been assessed individually to optimize the energy performance, however they have different parameters that affect energy performance that demands the use of detailed analysis using dynamic simulation. This paper is focused on compare an air conditioning system to be implemented in educational buildings in warm-climate, considering energy schemes provide for a constant air volume (CAV) flow system with a water chiller, while the other integrates a variable refrigerant flow (VRF) system. Adding in each case dedicated outdoor air System (DOAS) units. Energy consumption achieved by each AC system is obtained considering the configuration achieving energy savings of 40% of the annual electricity demand for cooling. Finally, the use of DOAS represents an increase of 20% of total electricity consumption.spa
dc.language.isoeng
dc.publisherIOP Conference Series: Materials Science and Engineeringspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectConstant air volumespa
dc.subjectVariable refrigerant flowspa
dc.subjectOutdoor air systemspa
dc.subjectEnergy efficiencyspa
dc.titleEnergy performance analysis between two air conditioning systems used in an educational Building in warm-climatespa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.1088/1757-899X/844/1/012031spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] EIA 2018 Monthly Energy Review U.S. Energy Whashington, DCspa
dc.relation.references[2] Universidad Nacional, Fundación Bariloche Política Energética 2010 Análisis y Revisión de los Objetivos de Política Energética Colombiana de Largo Plazo y Actualización de sus Estrategias de Desarrollo Bogotáspa
dc.relation.references[3] Grupo de Demanda Energética 2006 Caracterización Energética de los Sectores Residencial, Comercial y Terciario Bogotá D Cspa
dc.relation.references[4] UPME 2015 Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad Planeación Min Energética, Repub Colomb 2015:184.spa
dc.relation.references[5] Pérez-lombard L, Ortiz J, Coronel JF, Maestre IR 2011 A review of HVAC systems requirements in building energy regulations. Energy Build 2011 vol. 43 pp. 255–68. doi:10.1016/j.enbuild.2010.10.025.spa
dc.relation.references[6] Ministerio de Vivienda 2006 Código Técnico de la Edificación Partes I y II Madrid Españaspa
dc.relation.references[7] Barros-Alvarez M, Balbis-Morejon M, Tovar-Ospino I, Castro-Peña J, de Leon-Siado L, SilvaOrtega J I, Rosales D 2017 Energy consumption comparison between air conditioning system Mini-Split and Variable Refrigerant Flow in an educational building Espacios vol. 38 no. 43 pp 19spa
dc.relation.references[8] ASHRAE Sandards Committee 2006-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings Atlanta ASHRAEspa
dc.relation.references[9] Iwaro J, Mwasha A 2010 A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy vol. 38 pp. 7744–55. doi:10.1016/j.enpol.2010.08.027.spa
dc.relation.references[10] Luo C, Moghtaderi B, Page A 2010 Modelling of wall heat transfer using modified conduction transfer function , finite volume and complex Fourier analysis methods. Energy Build vol 42 pp. 605–17. doi:10.1016/j.enbuild.2009.10.031.spa
dc.relation.references[11] Li XQ, Chen Y, Spitler JD, Fisher D 2009 Applicability of calculation methods for conduction transfer function of building constructions. Int J Therm Sci vol 48 pp. 1441–51. doi:10.1016/j.ijthermalsci.2008.11.006.spa
dc.relation.references[12] Kim H, Stumpf A, Kim W 2011 Automation in Construction Analysis of an Energy Efficient Building Design Through Data Mining Approach. Autom Constr vol. 20 pp. 37–43. doi:10.1016/j.autcon.2010.07.006.spa
dc.relation.references[13] Madrigal J A, Cabello J J, Sagastume A, Balbis M. 2018 Evaluación de la Climatización en Locales Comerciales , Integrando Técnicas de Termografía , Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings , Integrating Thermography Techniques , Simulation and Modeling Información Tecnológica vol. 29 no. 4 pp. 179–188. doi: 10.4067/s0718-07642018000400179spa
dc.relation.references[14] International Organization for Standardization ISO. ISO 6946:2007. Building components and building elements — Thermal resistance and thermal transmittance — Calculation method. Switzerland: 2007. doi:10.1109/IEEESTD.2010.5733835.spa
dc.relation.references[15] Chan KT, Chow WK 1998 Energy impact of commercial-building envelopes in the sub-tropical climate. Appl Energy vol 60 pp. 21–39. doi:10.1016/S0306-2619(98)00021-X.spa
dc.relation.references[16] Signor R 1999 Análize de Regressao do Consumo de Energía Eléctrica Frente a Variáveis Arquitetonicas para Edifícios Comerciais Climatizados em 14 Capitais Brasileiras. Universidade Federal de Santa Catarinaspa
dc.relation.references[17] Aynur TN, Hwang Y, Radermacher R 2009 Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy Build vol 41:1143– 50. doi:10.1016/j.enbuild.2009.05.011.spa
dc.relation.references[18] Alvarez O, Sanjuan M, Bula A, Amaya F 2017 VAV System Operating in an Educational Building Under Tropical Conditions: Energy Analysis. ASME 2013. 7th Int. Conf. Energy Sustain. ES, Minneapolis, USA: ASME; 2017 pp. 1–8.spa
dc.relation.references[19] Balbis-Morejon M, Tovar-Ospino I, Castro-Peña JJ, Cárdenas-Escorcia Y del C 2017 Energy assessment of the system pumping a climate control scheme with water coolers for an educational building using dynamic simulation. Espacios vol 38 pp19–32spa
dc.relation.references[20] Hubbard RS 2011 Energy Impacts of Chilled-Water-Piping Configuration. HPAC Eng pp. 20–6spa
dc.relation.references[21] Wang F, Lin H, Tu W, Wang Y, Huang Y 2015 Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building Procedia Eng vol 121 pp. 1812–1818. doi:10.1016/j.proeng.2015.09.161.spa
dc.relation.references[22] Yu FW, Chan KT 2007 Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Build Environ vol 42 pp. 3816–3829. doi:10.1016/j.buildenv.2006.11.029.spa
dc.relation.references[23] Mumma S 2001 Ceiling Panel Cooling Systems. ASHRAE vol. 2 pp. 28–32.spa
dc.relation.references[24] Tian Z, Love JA 2009 Application of Radiant Cooling in Differente Climates: Assessment of Office Buildings Through Simulation. Elev. Int. IBPSA Conf., Glasgow, Scotland: Building Simulation pp. 2220–2227.spa
dc.relation.references[25] Kwok SSK, Lee EWM 2011 A study of the importance of occupancy to building cooling load in prediction by intelligent approach. Energy Convers Manag vol 52 pp. 2555–2564. doi:10.1016/j.enconman.2011.02.002.spa
dc.relation.references[26] Rahman MM, Rasul MG, Khan MMK 2010 Energy Conservation Measures in an Institutional Building in Sub-Tropical Climate in Australia. Appl Energy vol. 87 pp. 2994–3004. doi:10.1016/j.apenergy.2010.04.005.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal