Show simple item record


dc.creatorSagastume, Alexis
dc.creatorCogollos Martínez, Juan Bautista
dc.date.accessioned2020-07-21T22:02:42Z
dc.date.available2020-07-21T22:02:42Z
dc.date.issued2019-09-25
dc.identifier.citationSagastume Gutiérrez and J. Cogollos Martínez “Balance de energía y exergía de un horno de cuba vertical para la producción de cal”, IJMSOR, vol. 4, no. 1, 2019. https://doi. org/10.17981/ijmsor.04.01.08spa
dc.identifier.issn2539-5416 electrónico
dc.identifier.urihttps://hdl.handle.net/11323/6786
dc.description.abstractThis paper aims with methodologies and indicators for evaluating the impacts of freshwater use, the existing methods fundamentally analyze the amount of water used in relation to the impacts caused. Taking into account that there is a recognized need to consider the impacts, specifically on life cycle bases, the problem is that the data is considered insufficient or unreliable in the life cycle databases of water use, in addition not The method for evaluating the impact of the life cycle coincides with regard to the estimated impacts on the use of fresh water. These difficulties are highlighted and the advantages, limitations, differences in the results between different methods are analyzed, and the need for an improved methodology for evaluating the impacts of water use on life cycle bases. Quicklime production is a high energy consumer that is also characterized by high CO2 emissions. This work sets out to develop the energetic and exergetic balance of the limestone calcination process in order to identify the most influential factors in fuel consumption. The results show that the destruction of exergy during due to the combustion of the fuel and the transfer of heat and moment of the process are the most irreversible processes. The results also show that the energy and the exergy contained in the exhaust gases represent the main loss of the process. The combination of these factors represents more than 50% of the energy supplied to the process.eng
dc.description.abstractEl trabajo trata las metodologías y los indicadores para la evaluación de los impactos de uso del agua dulce, los métodos existentes analizan fundamentalmente la cantidad de agua usada con relación a los impactos ocasionados. Teniendo en cuenta que hay una necesidad reconocida para considerar los impactos, específicamente sobre bases del ciclo de vida, la problemática es que se consideran insuficientes los datos o no son confiables en las bases de datos del ciclo de vida del uso del agua, además no coincide el método de valoración del impacto del ciclo de vida para lo relacionado con los impactos estimados en el uso del agua dulce, se resaltan estas dificultades y se analizan las ventajas, limitaciones, diferencias en los resultados entre diversos métodos y se observa la necesidad de una metodología perfeccionada para la evaluación de los impactos del uso del agua sobre bases del ciclo de vida. La producción de cal viva es un alto consumidor de energía que además se caracteriza por elevadas emisiones de CO2. Este trabajo se propone desarrollar el balance energético y exergético del proceso de calcinación de calizas con el objetivo de identificar los factores más influyentes en el consumo de combustible. Los resultados muestran que la destrucción de exergía durante debido a la combustión del combustible y a la transferencia de calor y momento del proceso son los procesos más irreversibles. Los resultados además muestran que la energía y la exergía contenida en los gases de escape representan la principal pérdida del proceso. La combinación de estos factores representa más del 50% de la energía suministrada al proceso.spa
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesIJMSOR; Vol. 4, Núm. 1 (2019)
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceIJMSOR
dc.subjectEnergyspa
dc.subjectExergyspa
dc.subjectEfficiencyspa
dc.subjectEnergíaspa
dc.subjectExergíaspa
dc.subjectEficienciaspa
dc.titleBalance de energía y exergía de un horno de cuba vertical para la producción de calspa
dc.title.alternativeEnergy balance and exergy of a vertical cell furnace for lime productionspa
dc.typearticlespa
dcterms.references[1] A. Sagastume, J. Van Caneghem, J. B. Cogollos and C. Vandecasteele, “Evaluation of the environmental performance of lime production in Cuba”, J Clean Prod, vol. 31, no. 1, pp. 126–136, Aug. 2012. https://doi.org/10.1016/j. jclepro.2012.02.035spa
dcterms.references[2] P. A. Ochoa, A. Sagastume, J. B. Cogollos and C. Vandecasteele, “Cleaner production in a small lime factory by means of process control”, J Clean Prod, vol. 18, no. 12, pp. 1171–1176, Aug. 2010. https://doi.org/10.1016/j.jclepro.2010.03.019spa
dcterms.references[3] R. S. Boynton, Chemistry and Technology of Lime and Limestone, New york: John Wiley & Sons, 1980.spa
dcterms.references[4] H. Ruch, “The theoretical limits of heat consumption in lime burning due to the physical and chemical laws”, ZKG Int, vol. 34, no. 1, pp. 20–26, Jan, 1981.spa
dcterms.references[5] Y. De la Peña, G. Bordeth, H. Campo, y U. Murillo, Clean Energies: An Opportunity to save the Planet, IJMSOR, vol. 3, n.º 1, pp. 21-25, dic. 2018.spa
dcterms.references[6] Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11.spa
dcterms.references[7] A. Sagastume and C. Vandecasteele, “Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production”, Energy, vol. 36, no. 5, pp. 2820–2827, May. 2011. https://doi.org/10.1016/j.energy.2011.02.023spa
dcterms.references[8] D. Sheng-xiang, x. Qing-song and Z. Jie-min, “A lime shaft kiln diagnostic expert system based on holographic monitoring and real-time simulation,” Expert Syst Apl, vol. 38, no. 12, pp. 15400–15408, Nov. 2011. https://doi. org/10.1016/j.eswa.2011.06.021spa
dcterms.references[9] M.Z. Sogut, Z. Oktay and A. Hepbasli, “Energetic and exergetic assessment of a trass mill process in a cement plant,” Energy Convers Manag, vol. 50, no. 9, pp. 2316–2323, Sep. 2009. https://doi.org/10.1016/j.enconman.2009.05.013spa
dcterms.references[10] P. Regulagadda, I. Dincer and G. F. Naterer, “Exergy analysis of a thermal power plant with measured boiler and turbine losses”, Appl Therm Eng, vol. 30, no. 8-9, pp. 970–976, Jun. 2010. https://doi.org/10.1016/j.applthermaleng.2010.01.008spa
dcterms.references[11] Z. Utlu, Z Sogut, A. Hepbasli and Z. Oktay, “Energy and exergy analyses of a raw mill in a cement production”, Appl Therm Eng, vol. 26, no. 17-18, pp. 2479–2489, Dec. 2006. https://doi.org/10.1016/j.applthermaleng.2005.11.016spa
dcterms.references[12] I. H. Aljundi, “Energy and exergy analysis of a steam power plant in Jordan”, Appl Therm Eng, vol. 29, no. 2-3, pp. 324–328, Feb. 2009. https://doi.org/10.1016/j.applthermaleng.2008.02.029spa
dcterms.references[13] A. Senegacnik, J. Oman and B. Sirok, “Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey”, Appl Therm Eng, vol. 27, no. 8-9, pp. 1473–1482, Jun. 2007. https://doi. org/10.1016/j.applthermaleng.2006.09.026spa
dcterms.references[14] P. L. Zuideveld and P. J. van den Berg, “Design of lime shaft kilns”, Chem Eng Sci, vol. 26, no. 6, pp. 875–883, Jun. 1971. https://doi.org/10.1016/0009-2509(71)83048-8spa
dcterms.references[15] y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed. Boston, MA, USA; McGrawHill, 2006.spa
dcterms.references[16] A. Bejan, G. Tsatsaronis and M. J. Moran, Thermal design and optimization. New york: John Wiley & Sons, 1996.spa
dcterms.references[17] C. Koroneos, G. Roumbas and N. Moussiopoulos, “Exergy analysis of cement production”, IJEX, vol. 2, no. 1, pp. 55– 68, Jan. 2005. https://doi.org/10.1504/IJEx.2005.006433spa
dcterms.references[18] H. Piringer and W. Werner, “Conversion of large-diameter single shaft kilns to lignite dust firing successfully concluded”, ZKG Int, vol. 61, no. 1, pp. 46–52, Jan. 2008.spa
dcterms.references[19] A. Bes, “Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns”, Doctoral Thesis, ISUT, Magdeburg, de, 2006. Available: www.uni-magdeburg.de/ isut/TV/English/Research/Project/Bes.pdfspa
dcterms.references[20] A. Bes, E. Specht and G. Kehse, “Calculation of the cooling zone length and the lime discharge temperature of lime shaft kilns”, ZKG Int, vol. 60, no. 4, pp. 63–73, Jan. 2007.spa
dcterms.references[21] T. Kotas, The exergy method of thermal plant analysis, 2th ed., Krieger Publishing Company, Fla, USA, 1995.spa
dcterms.references[22] C. Chen, E. Specht and J. Kehse, “Influences of origin and material property of limestone upon its decomposition behavior in shaft kilns”, ZKG Int, vol. 60, no. 1, pp. 51–60, Jan. 2007spa
dc.source.urlhttp://ijmsoridi.com/index.php/ijmsor/article/view/110
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://hdl.handle.net/11323/6786
dc.identifier.eissn2539-5416


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/publicdomain/zero/1.0/