Mostrar el registro sencillo del ítem

dc.contributor.authorArrieta-Castro, Marcospa
dc.contributor.authorDonado-Rodríguez, Adrianaspa
dc.contributor.authorAcuña Robles, Guillermo Jesússpa
dc.contributor.authorCanales, Faustospa
dc.contributor.authorTeegavarapu, Ramesh S. V.spa
dc.contributor.authorKázmierczak, Bartoszspa
dc.date.accessioned2020-07-22T16:05:23Z
dc.date.available2020-07-22T16:05:23Z
dc.date.issued2020-05-20
dc.identifier.issn2073-4441spa
dc.identifier.urihttps://hdl.handle.net/11323/6796spa
dc.description.abstractThe aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country. The methods employed for the trend detection and quantification were the Mann–Kendall (MK) test, the modified MK (MMK) test, and the Sen’s slope (SS) estimator. Statistically significant trends (at a 95% level of confidence) were detected in more than 30% of the 105 evaluated datasets. The results from the MK test indicate the presence of statistically significant downward trends in the upstream stations and upward trends in the downstream stations, with the latter presenting steep positive slopes. The findings of this study are valuable assets for water resources management and sustainable planning in the Meta River Basin.spa
dc.language.isoeng
dc.publisherWaterspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectStreamflow trendsspa
dc.subjectMann–Kendallspa
dc.subjectModified Mann-Kendallspa
dc.subjectSens’s slopespa
dc.subjectMeta Riverspa
dc.titleAnalysis of streamflow variability and trends in the Meta River, Colombiaspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/w12051451spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [CrossRef]spa
dc.relation.references2. Silva, A.T. Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables. In Fundamentals of Statistical Hydrology; Naghettini, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 537–577.spa
dc.relation.references3. Arfan, M.; Lund, J.; Hassan, D.; Saleem, M.; Ahmad, A. Assessment of Spatial and Temporal Flow Variability of the Indus River. Resources 2019, 8, 103. [CrossRef]spa
dc.relation.references4. Ali, R.; Ismael, A.; Heryansyah, A.; Nawaz, N. Long Term Historic Changes in the Flow of Lesser Zab River, Iraq. Hydrology 2019, 6, 22. [CrossRef]spa
dc.relation.references5. Tadese, M.T.; Kumar, L.; Koech, R.; Zemadim, B. Hydro-Climatic Variability: A Characterisation and Trend Study of the Awash River Basin, Ethiopia. Hydrology 2019, 6, 35. [CrossRef]spa
dc.relation.references6. Langat, P.; Kumar, L.; Koech, R. Temporal Variability and Trends of Rainfall and Streamflow in Tana River Basin, Kenya. Sustainability 2017, 9, 1963. [CrossRef]spa
dc.relation.references7. Yilmaz, A.G.; Perera, B.J.C. Spatiotemporal Trend Analysis of Extreme Rainfall Events in Victoria, Australia. Water Resour. Manag. 2015, 29, 4465–4480. [CrossRef]spa
dc.relation.references8. Wdowikowski, M.; Ka ´zmierczak, B.; Ledvinka, O. Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin. Meteorol. Hydrol. Water Manag. 2016, 4, 53–63. [CrossRef]spa
dc.relation.references9. Pellicciotti, F.; Burlando, P.; Van Vliet, K. Recent trends in precipitation and streamflow in the Aconcagua River Basin, central Chile. In IAHS Assembly; IAHS Publ.: Foz do Iguaçu, Brazil, 2007; pp. 1–22.spa
dc.relation.references10. Su, L.; Miao, C.; Kong, D.; Duan, Q.; Lei, X.; Hou, Q.; Li, H. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 2018, 563, 818–833. [CrossRef]spa
dc.relation.references11. Feng, J.; Li, D.; Wang, T.; Liu, Q.; Deng, L.; Zhao, L. Acceleration of the Extreme Sea Level Rise Along the Chinese Coast. Earth Space Sci. 2019, 6, 1942–1956. [CrossRef]spa
dc.relation.references12. Teegavarapu, R.S.V. Methods for Analysis of Trends and Changes in Hydroclimatological Time-Series. In Trends and Changes in Hydroclimatic Variables; Teegavarapu, R.S.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–89.spa
dc.relation.references13. ¸Sener, ¸S.; ¸Sener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [CrossRef]spa
dc.relation.references14. Ndehedehe, C.E.; Ferreira, V.G. Assessing land water storage dynamics over South America. J. Hydrol. 2020, 580, 124339. [CrossRef]spa
dc.relation.references15. Vega-Jácome, F.; Lavado-Casimiro, W.S.; Felipe-Obando, O.G. Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru). Theor. Appl. Climatol. 2018, 132, 347–362. [CrossRef]spa
dc.relation.references16. Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966–2011). Int. J. Climatol. 2016, 36, 3839–3855. [CrossRef]spa
dc.relation.references17. Seoane, R.; López, P. Assessing the effects of climate change on the hydrological regime of the Limay River basin. GeoJournal 2007, 70, 251–256. [CrossRef]spa
dc.relation.references18. Vich, A.I.J.; López, P.M.; Schumacher, M.C. Trend detection in the water regime of the main rivers of the Province of Mendoza, Argentina. GeoJournal 2007, 70, 233–243. [CrossRef]spa
dc.relation.references19. De Santos, V.O.; Nishiyama, L. Tendências Hidrológicas no Alto Curso da Bacia Hidrográfica do Rio Uberaba, em Minas Gerais. Caminhos Geogr. 2016, 17, 196–212. [CrossRef]spa
dc.relation.references20. De Alcântara, L.R.P.; de Costa, I.R.A.; de Barros, V.H.O.; Santos Neto, S.M.; Coutinho, A.P.; Antonino, A.C.D. Análise de tendência para dados pluviométricos no município de Toritama-PE. J. Environ. Anal. Prog. 2019, 4, 130. [CrossRef]spa
dc.relation.references21. De Quadros, L.E.; de Mello, E.L.; Gomes, B.M.; Araujo, F.C. Rainfall trends for the State of Paraná: Present and future climate. Ambient. Agua Interdiscip. J. Appl. Sci. 2019, 14, 1. [CrossRef]spa
dc.relation.references22. Rodrigues, A.L.M.; Reis, G.B.; dos Santos, M.T.; da Silva, D.D.; dos Santos, V.J.; de Siqueira Castro, J.; Calijuri, M.L. Influence of land use and land cover’s change on the hydrological regime at a Brazilian southeast urbanized watershed. Environ. Earth Sci. 2019, 78, 595. [CrossRef]spa
dc.relation.references23. De Santos, V.O.; de Naves, J.G.P. Low flow diagnosis on upper course of Uberaba river basin. Ambiência 2016, 12, 859–868. [CrossRef]spa
dc.relation.references24. Trindade, A.L.C.; de Almeida, K.C.B.; Barbosa, P.E.; Oliveira, S.M.A.C. Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do Rio das Velhas, estado de Minas Gerais. Eng. Sanit. Ambient. 2016, 22, 13–24. [CrossRef]spa
dc.relation.references25. Restrepo, J.C.; Ortíz, J.C.; Maza, M.; Otero, L.; Alvarado, M.; Aguirre, J. Estimating fluvial discharge in the Caribbean seaboard of Colombia: Magnitude, variability and extreme events. Coast. Eng. Proc. 2012, 1, 44. [CrossRef]spa
dc.relation.references26. Restrepo, J.C.; Ortíz, J.C.; Pierini, J.; Schrottke, K.; Maza, M.; Otero, L.; Aguirre, J. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. J. Hydrol. 2014, 509, 266–281. [CrossRef]spa
dc.relation.references27. Restrepo, J.D.; Escobar, H.A. Sediment load trends in the Magdalena River basin (1980–2010): Anthropogenic and climate-induced causes. Geomorphology 2018, 302, 76–91. [CrossRef]spa
dc.relation.references28. Restrepo, J.D.; Escobar, R.; Tosic, M. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts. Geomorphology 2018, 302, 92–105. [CrossRef]spa
dc.relation.references29. Ávila, Á.; Guerrero, F.; Escobar, Y.; Justino, F. Recent Precipitation Trends and Floods in the Colombian Andes. Water 2019, 11, 379. [CrossRef]spa
dc.relation.references30. Puertas-Orozco, O.L.; Carvajal-Escobar, Y.; Quintero-Angel, M. Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia. DYNA 2011, 78, 112–120.spa
dc.relation.references31. Carmona, A.M.; Poveda, G. Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition. Clim. Change 2014, 123, 301–313. [CrossRef]spa
dc.relation.references32. Ardila Luna, D.C. El río Meta y los proyectos para la integración de los Llanos Orientales colombianos, desde la Colonia hasta el siglo XXI. Anu. Hist. Reg. Front. 2016, 21, 265–283.spa
dc.relation.references33. Ministerio de Transporte Plan Maestro Fluvial de Colombia 2015. 2015; 108. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved= 2ahUKEwi7x8zh4MHpAhVNCqYKHQb1C6EQFjAAegQIAxAB&url=https%3A%2F%2Fwww. mintransporte.gov.co%2Fdescargar.php%3FidFile%3D13276&usg=AOvVaw2Eky0KTUsR1_G0JSnb7I_1 (accessed on 15 May 2020).spa
dc.relation.references34. Liu, L.; Wen, Y.; Liang, Y.; Zhang, F.; Yang, T. Extreme weather impacts on inland waterways transport of Yangtze River. Atmosphere (Basel) 2019, 10, 133. [CrossRef]spa
dc.relation.references35. Actualización de los Estudios y Diseños para la Navegabilidad del río Meta entre Cabuyaro (K804) y Puerto Carreño (K0); Universidad del Norte: Barranquilla, Colombia, 2013.spa
dc.relation.references36. Acuña, G.J.; Ávila, H.; Canales, F.A. River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia. Water 2019, 11, 1382. [CrossRef]spa
dc.relation.references37. Warne, A.G.; Meade, R.H.; White, W.A.; Guevara, E.H.; Gibeaut, J.; Smyth, R.C.; Aslan, A.; Tremblay, T. Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela. Geomorphology 2002, 44, 273–307. [CrossRef]spa
dc.relation.references38. IDEAM. Estudio Nacional del Agua; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá DC, Colombia, 2010.spa
dc.relation.references39. IDEAM. Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 10 October 2019).spa
dc.relation.references40. Umar, D.A.; Ramli, M.F.; Aris, A.Z.; Jamil, N.R.; Aderemi, A.A. Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmos. Res. 2019, 224, 52–64. [CrossRef]spa
dc.relation.references41. Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [CrossRef]spa
dc.relation.references42. Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [CrossRef]spa
dc.relation.references43. Kibria, K.N.; Ahiablame, L.; Hay, C.; Djira, G. Streamflow trends and responses to climate variability and land cover change in South Dakota. Hydrology 2016, 3, 2. [CrossRef]spa
dc.relation.references44. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]spa
dc.relation.references45. Winslow, L.A.; Read, J.S.; Hansen, G.J.A.; Hanson, P.C. Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett. 2015, 42, 355–361. [CrossRef]spa
dc.relation.references46. Mohd Razali, N.; Bee Wah, Y. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33.spa
dc.relation.references47. Lozano Blanco, L.J.; Meseguer Zapata, V.F.; De Juan García, D. Statistical analysis of laboratory results of Zn wastes leaching. Hydrometallurgy 1999, 54, 41–48. [CrossRef]spa
dc.relation.references48. Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 15. [CrossRef]spa
dc.relation.references49. Pohlert, T. Package “Trend”: Non-Parametric Trend Tests and Change-Point Detection. Available online: https://cran.r-project.org/package=trend (accessed on 3 March 2020).spa
dc.relation.references50. Xu, S.; Qin, M.; Ding, S.; Zhao, Q.; Liu, H.; Li, C.; Yang, X.; Li, Y.; Yang, J.; Ji, X. The impacts of climate variation and land use changes on streamflow in the Yihe River, China. Water (Switzerland) 2019, 11, 887. [CrossRef]spa
dc.relation.references51. Guarín Giraldo, G.W.; Poveda, G. Variabilidad espacial y temporal del almacenamiento de agua en el suelo en Colombia. Rev. Acad. Colomb. Ciencias Exactas Físicas Nat. 2013, 37, 89–113.spa
dc.relation.references52. Estudio Nacional del Agua 2018; IDEAM: Bogota, Colombia, 2019.spa
dc.relation.references53. Guse, B.; Kail, J.; Radinger, J.; Schröder, M.; Kiesel, J.; Hering, D.; Wolter, C.; Fohrer, N. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Sci. Total Environ. 2015, 533, 542–556. [CrossRef]spa
dc.relation.references54. IDEAM. Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, DC, Colombia, 2010.spa
dc.relation.references55. Armenteras, D.; González, T.; Meza, M.; Ramírez-Delgado, J.P.; Cabrera, E.; Galindo, G.; Yepes, A. Causas de Degradación Forestal en Colombia: Una Primera Aproximación; Universidad Nacional de Colombia Sede Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia-IDEAM, Programa ONU-REDD: Bogota, DC, Colombia, 2018.spa
dc.relation.references56. Food and Agriculture Organization of the United Nations FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/LC/visualize (accessed on 20 April 2020).spa
dc.relation.references57. IDEAM. Informe Anual Sobre el Estado del Medio Ambiente y los Recursos Naturales Renovables de Colombia; Imprenta Nacional: Bogota, Colombia, 2004.spa
dc.relation.references58. Torres Pungo, K.; Rivera, H.G.; Rivera, M.; Fuentes Bacca, J.B.; León Alvarez, M.A. Identificación de la incertidumbre en el proceso estocástico de caudales medios en el río Fonce (San Gil–Santander). Av. Investig. Ing. 2015, 12, 1. [CrossRefspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal