Show simple item record

dc.creatorCanales, Fausto
dc.creatorGwózdziej-Mazur, Joanna
dc.creatorJadwiszczak, Piotr
dc.creatorStruk-Sokolowska, Joanna
dc.creatorWartalska, Katarzyna
dc.creatorWdowikowski, Marcin
dc.creatorKázmierczak, Bartosz
dc.description.abstractAbstract: Rainwater harvesting (RWH) for domestic uses is widely regarded as an economic and ecological solution in water conservation and storm management programs. This paper aims at evaluating long-term trends in 20-day cumulative rainfall periods per year in Poland, for assessing its impact on the design and operation conditions for RWH systems and resource availability. The time-series employed corresponds to a set of 50-year long time-series of rainfall (from 1970 to 2019) recorded at 19 synoptic meteorological stations scattered across Poland, one of the European countries with the lowest water availability index. The methods employed for assessing trends were the Mann–Kendall test (M–K) and the Sen’s slope estimator. Most of the datasets exhibit stationary behaviour during the 50-year long period, however, statistically significant downward trends were detected for precipitations in Wrocław and Opole. The findings of this study are valuable assets for integrated water management and sustainable planning in
dc.rightsCC0 1.0 Universal*
dc.subjectRainwater harvestingspa
dc.subjectRainfall trendsspa
dc.titleLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Polandspa
dcterms.references1. Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.; Pociask-Karteczka, J.; Skrzypczyk, L.; Pociask-Karteczka, J. Zasoby wodne a ich wykorzystanie. Nauka 2014, 1, 77–
dcterms.references2. Olichwer, T. Long-term variability of water resources in mountainous areas: Case Study—Kłodzko region (SW Poland). Carpathian J. Earth Environ. Sci. 2019, 14, 29–38. [CrossRef]spa
dcterms.references3. Małecki, Z.J.; Goł ˛ebiak, P. Zasoby wodne Polski i ´swiata. Zesz. Nauk. In˙zynieria L ˛adowa Wodna Kształtowaniu Srodowiska ´ 2012, 7, 50–
dcterms.references4. Kuczy ´nski, W.; Zuchowicki, W. Ocena aktualnej sytuacji w zaopatrzeniu w wode{ogonek} w Polsce na tle sytuacji w ´swiecie. Rocz. Ochr. Sr. 2011, 12, 419–
dcterms.references5. Orli ´nska-Wo´zniak, P.; Wilk, P.; G ˛ebala, J. Water availability in reference to water needs in Poland. Meteorol. Hydrol. Water Manag. 2014, 1, 45–50. [CrossRef]spa
dcterms.references6. Sucho ˙zebrski, J. Zasoby wodne Polski. In Zarz ˛adzanie Zasobami Wodnymi w Polsce; Global Compact Network Poland: Warsaw, Poland, 2018; pp. 92–
dcterms.references7. Panasiuk, D.; Suduk, O.; Skrypchuk, P.; Miłaszewski, R. Comparison of the water footprint in Poland and Ukraine. Ekon. Srodowisko ´ 2018, 4, 112–
dcterms.references8. Michalczyk, Z. Odpływ ´sredni, zmienno´s´c w czasie i zró˙znicowanie przestrzenne. In Hydrologia Polski; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; Wydawnictwo Naukowe PWN SA: Warsaw, Poland, 2017; ISBN
dcterms.references9. Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in Quantifying Changes in the Global Water Cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [CrossRef]spa
dcterms.references10. Falloon, P.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [CrossRef]spa
dcterms.references11. Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 297–311. [CrossRef]spa
dcterms.references12. Lipi ´nska, D. European Union Water Policy: Key Issues and Challenges. Comp. Econ. Res. Cent. East Eur. 2012, 15, 123–141. [CrossRef]spa
dcterms.references13. Kutyłowska, M. Forecasting failure rate of water pipes. Water Supply 2019, 19, 264–273. [CrossRef]spa
dcterms.references14. Piasecki, A.; Jurasz, J.; Ka´zmierczak, B. Forecasting Daily Water Consumption: A Case Study in Torun, Poland. Period. Polytech. Civ. Eng. 2018, 62, 818–824. [CrossRef]spa
dcterms.references15. Dawidowicz, J.; Czapczuk, A.; Piekarski, J. The Application of Artificial Neural Networks in the Assessment of Pressure Losses in Water Pipes in the Design of Water Distribution Systems. Rocz. Ochr. Srodowiska ´ 2018, 20, 292–
dcterms.references16. Ward, S.; Barr, S.; Memon, F.; Butler, D. Rainwater harvesting in the UK: Exploring water-user perceptions. Urban. Water J. 2013, 10, 112–126. [CrossRef]spa
dcterms.references17. Steffen, J.; Jensen, M.; Pomeroy, C.A.; Burian, S.J. Water Supply and Stormwater Management Benefits of Residential Rainwater Harvesting in U.S. Cities. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 810–824. [CrossRef]spa
dcterms.references18. Torres, M.N.; Fontecha, J.E.; Zhu, Z.; Walteros, J.L.; Rodríguez, J.P. A participatory approach based on stochastic optimization for the spatial allocation of Sustainable Urban Drainage Systems for rainwater harvesting. Environ. Model. Softw. 2020, 123, 104532. [CrossRef]spa
dcterms.references19. Deitch, M.J.; Feirer, S.T. Cumulative impacts of residential rainwater harvesting on stormwater discharge through a peri-urban drainage network. J. Environ. Manag. 2019, 243, 127–136. [CrossRef]spa
dcterms.references20. Teston, A.; Teixeira, C.; Ghisi, E.; Cardoso, E. Impact of Rainwater Harvesting on the Drainage System: Case Study of a Condominium of Houses in Curitiba, Southern Brazil. Water 2018, 10, 1100. [CrossRef]spa
dcterms.references21. Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. X 2020, 6, 100033. [CrossRef]spa
dcterms.references22. Council of the European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; Council of the European Union: Brussel, Belgium,
dcterms.references23. European Parliament; Council of the European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Eepealing Directive 76/160/EEC; Council of the European Union: Brussel, Belgium,
dcterms.references24. Jeong, G.Y.; Kim, J.Y.; Seo, J.; Kim, G.M.; Jin, H.C.; Chun, Y. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys. 2014, 14, 505–521. [CrossRef]spa
dcterms.references25. Richon, C.; Dutay, J.-C.; Dulac, F.; Wang, R.; Balkanski, Y. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences 2018, 15, 2499–2524. [CrossRef]spa
dcterms.references26. Orlovi´c-Leko, P.; Vidovi´c, K.; Cigleneˇcki, I.; Omanovi´c, D.; Sikiri´c, M.D.; Šimuni´c, I. Physico-Chemical Characterization of an Urban Rainwater (Zagreb, Croatia). Atmos. Basel 2020, 11, 144. [CrossRef]spa
dcterms.references27. Kieber, R.J.; Peake, B.; Willey, J.D.; Avery, G.B. Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos. Environ. 2002, 36, 3557–3563. [CrossRef]spa
dcterms.references28. Zdeb, M.; Zamorska, J.; Papciak, D.; Sły´s, D. The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use. Resources 2020, 9, 12. [CrossRef]spa
dcterms.references29. Kus, B.; Kandasamy, J.; Vigneswaran, S.; Shon, H.K. Analysis of first flush to improve the water quality in rainwater tanks. Water Sci. Technol. 2010, 61, 421–428. [CrossRef]spa
dcterms.references30. Song, Y.; Du, X.; Ye, X. Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge. Int. J. Environ. Res. Public Health 2019, 16, 3121. [CrossRef]spa
dcterms.references31. Willey, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B. Rainwater dissolved organic carbon: Concentrations and global flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [CrossRef]spa
dcterms.references32. Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [CrossRef]spa
dcterms.references33. Kaushik, R.; Balasubramanian, R. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR. Atmos. Environ. 2012, 46, 131–139. [CrossRef]spa
dcterms.references34. Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [CrossRef]spa
dcterms.references35. Al-Khatib, I.; Arafeh, G.; Al-Qutob, M.; Jodeh, S.; Hasan, A.; Jodeh, D.; van der Valk, M. Health Risk Associated with Some Trace and Some Heavy Metals Content of Harvested Rainwater in Yatta Area, Palestine. Water 2019, 11, 238. [CrossRef]spa
dcterms.references36. Huston, R.; Chan, Y.C.; Chapman, H.; Gardner, T.; Shaw, G. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res. 2012, 46, 1121–1132. [CrossRef] [PubMed]spa
dcterms.references37. Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [CrossRef] [PubMed]spa
dcterms.references38. Gikas, G.D.; Tsihrintzis, V.A. Effect of first-flush device, roofing material, and antecedent dry days on water quality of harvested rainwater. Environ. Sci. Pollut. Res. 2017, 24, 21997–22006. [CrossRef] [PubMed]spa
dcterms.references39. Sneyers, R. On the Statistical Analysis of Series of Observations. WMO Technical Note No.143; World Meteorological Organization: Geneva, Switzerland,
dcterms.references40. Coombes, P.J.; Barry, M.E. The effect of selection of time steps and average assumptions on the continuous simulation of rainwater harvesting strategies. Water Sci. Technol. 2007, 55, 125–133. [CrossRef] [PubMed]spa
dcterms.references41. IMGW Polish Institute of Meteorology and Water Management—National Research Institute (IMGW). Available online: (accessed on 2 January 2020).spa
dcterms.references42. Pi ´nskwar, I.; Chory ´nski, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2018, 135, 773–787. [CrossRef]spa
dcterms.references43. Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [CrossRef]spa
dcterms.references44. Ka´zmierczak, B.; Wdowikowski, M.; Gwo´zdziej-Mazur, J. Trends in daily changes of precipitation on the example of Wrocław. Ekon. Sr. 2019, 1, 142–
dcterms.references45. Urban, G.; Richterová, D.; Kliegrová, S.; Zusková, I. Durability of snow cover and its long-term variability in the Western Sudetes Mountains. Theor. Appl. Climatol. 2019, 137, 2681–2695. [CrossRef]spa
dcterms.references46. Struk-Sokołowska, J.; Gwo ´zdziej-Mazur, J.; Jadwiszczak, P.; Butarewicz, A.; Ofman, P.; Wdowikowski, M.; Ka ´zmierczak, B. The Quality of Stored Rainwater for Washing Purposes. Water 2020, 12, 252. [CrossRef]spa
dcterms.references47. Ndehedehe, C.E.; Ferreira, V.G. Assessing land water storage dynamics over South America. J. Hydrol. 2020, 580, 124339. [CrossRef]spa
dcterms.references48. Sharma, S.; Mujumdar, P.P. On the relationship of daily rainfall extremes and local mean temperature. J. Hydrol. 2019, 572, 179–191. [CrossRef]spa
dcterms.references49. Ali, R.; Ismael, A.; Heryansyah, A.; Nawaz, N. Long Term Historic Changes in the Flow of Lesser Zab River, Iraq. Hydrology 2019, 6, 22. [CrossRef]spa
dcterms.references50. Langat, P.; Kumar, L.; Koech, R. Temporal Variability and Trends of Rainfall and Streamflow in Tana River Basin, Kenya. Sustainability 2017, 9, 1963. [CrossRef]spa
dcterms.references51. Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Ka ´zmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [CrossRef]spa
dcterms.references52. Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [CrossRef]spa
dcterms.references53. Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [CrossRef]spa
dcterms.references54. Ledvinka, O.; Lamacova, A. Detection of field significant long-term monotonic trends in spring yields. Stoch. Environ. Res. Risk Assess. 2015, 29, 1463–1484. [CrossRef]spa
dcterms.references55. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]spa
dcterms.references56. Onyutha, C. Statistical Uncertainty in Hydrometeorological Trend Analyses. Adv. Meteorol. 2016, 2016, 8701617. [CrossRef]spa
dcterms.references57. Wagesho, N.; Goel, N.K.; Jain, M.K. Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia. J. Hydrol. 2012, 444–445, 113–133. [CrossRef]spa
dcterms.references58. Makki, A.A.; Stewart, R.A.; Panuwatwanich, K.; Beal, C. Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. J. Clean. Prod. 2013, 60, 129–146. [CrossRef]spa
dcterms.references59. Lee, M.; Tansel, B.; Balbin, M. Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resour. Conserv. Recycl. 2011, 56, 1–6. [CrossRef]spa
dcterms.references60. Lee, M.; Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 2013, 128, 683–689. [CrossRef] [PubMed]spa
dcterms.references61. Polish Geological Institute Groundwater Resources in Poland. Available online: phs/tasks/8862-groundwater-resources-in-poland.html (accessed on 6 June 2020).spa
dcterms.references62. Witkowski, A.J.; Kowalczyk, A.; Rubin, H.; Rubin, K. Groundwater quality and migration of pollutants in the multi-aquifer system of the former chemical works “Tarnowskie Góry” area. Polish Geol. Inst. Spec. Pap. 2008, 24, 123–
dcterms.references63. Montcoudiol, N.; Isherwood, C.; Gunning, A.; Kelly, T.; Younger, P.L. Shale gas impacts on groundwater resources: Understanding the behavior of a shallow aquifer around a fracking site in Poland. Energy Procedia 2017, 125, 106–115. [CrossRef]spa
dcterms.references64. Jakóbczyk-Karpierz, S.; Sl´ ósarczyk, K.; Sitek, S. Tracing multiple sources of groundwater pollution in a complex carbonate aquifer (Tarnowskie Góry, southern Poland) using hydrogeochemical tracers, TCE, PCE, SF6 and CFCs. Appl. Geochem. 2020, 118. [CrossRef]spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal