Show simple item record

dc.creatorSilva, Jones S.
dc.creatorCanales, Fausto
dc.creatorBeluco, Alexandre
dc.date.accessioned2020-07-22T19:13:01Z
dc.date.available2020-07-22T19:13:01Z
dc.date.issued2020
dc.identifier.issn2215-0161
dc.identifier.urihttps://hdl.handle.net/11323/6806
dc.description.abstractThis method article proposes the establishment of a feasibility space as an objective to be achieved during the development of new technologies to convert energy from renewable resources. The feasibility space can also be a reference when designing an energy system based on renewable resources. The feasibility space is a set of parameter values for the design stage that define the economic and technical feasibility of an energy system or a new technology, which must be satisfied when the energy system comes into operation or when the new technology for converting power goes into operation. The study of possible feasibility spaces allows characterizing energy systems or new technologies as attractive investments, or on the other hand, as unfeasible ventures. - The method proposes to establish a goal to achieve during the development of technologies for energy conversion. - The method provides a benchmark for both the stages of design and development of generation systems and new technologies. - The feasibility space constitutes a planning tool for power systems based on renewable resources of any size.spa
dc.language.isoengspa
dc.publisherMethodsXspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectRenewable energyspa
dc.subjectFeasibility spacespa
dc.subjectHybrid energy systemsspa
dc.subjectNew technologiesspa
dc.titleA ’feasibility space’ as a goal to be achieved in the development of new technologies for converting renewable energiesspa
dc.typeArticlespa
dcterms.references[1] J.S. Silva, A. Beluco, Characterization of a feasibility space for a new technology – a case study of wave energy in southern Brazil, Curr. Alternat. Energy v.2 (2) (2018) 112–122 n http://doi.org/10.2174/1570178615666180830102336 .spa
dcterms.references[2] L.E. Assis, A. Beluco, L.E.S.B. Almeida, On the wave energy potential along the southern coast of Brazil, Int. J. Energy Environ. v.5 (1) (2014) 59–66 n http://doi.org/10.5935/2076-2909.20140002 .spa
dcterms.references[3] A. Beluco, P.K. Souza, F.P. Livi, J. Caux, Energetic complementarity [of solar energy] with hydropower and the ossibility of storage in batteries and water reservoirs, in: B. Sørensen (Ed.), Solar Energy Storage, 7, Academic Press, 2015, pp. 155–188. chapter https://doi.org/10.1016/B978-0-12-409540-3.00007-4 .spa
dcterms.references[4] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco, A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions, Sol. Energy v.195 (2020) 703–724 https://doi.org/10.1016/j. solener.2019.11.087.spa
dcterms.references[5] D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, A review of computer tools for analyzing the integration of renewable energy into various energy systems, Appl. Energy v.87 (2010) 1059–1082 https://doi.org/10.1016/j.apenergy.2009.09.026.spa
dcterms.references[6] Homer Energy, Software HOMER, Version 2.68 Beta, Micropower Opt. Model (2009) Available at https://www.homerenergy. com/ .spa
dcterms.references[7] T.W. Lambert, P. Gilman, P.D. Lilienthal, Micropower System Modeling with Homer, in: F.A. Farret, M.G. Simões (Eds.), Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 2005, pp. 379–418 https://doi.org/10.1002/ 0471755621.ch15.spa
dcterms.references[8] P.D. Lilienthal, T.W. Lambert, P. Gilman, Computer Modeling of Renewable Power Systems, in: C.J. Cleveland (Ed.), Encyclopedia of Energy, 1, Elsevier, Amsterdam, 2004, pp. 633–647. NREL Report CH-710-36771 https://doi.org/10.1016/ B0-12-176480-X/00522-2 .spa
dcterms.references[9] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Dataset after seven years simulating hybrid energy systems with Homer Legacy, Data Science Journal v.19 (1) (2020) paper n.14 http://doi.org/10.5334/dsj-2020-014.spa
dcterms.references[10] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Seven years simulating hybrid energy system with Homer Legacy, Mendeley Data, v.2 (2020) http://doi.org/10. 17632/ybxsttf2by.2.spa
dcterms.references[11] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Seven years simulating hybrid energy systems with Homer Legacy, Mendeley Data, v.2, File #09-Silva-Beluco2018.hmr (2020) http://dx.doi.org/10.17632/ybxsttf2by.2#file-43e56b20-0130-4036-b447-8952020eee9f.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.mex.2020.100960


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal