Mostrar el registro sencillo del ítem

dc.contributor.authorSilva, Jones S.spa
dc.contributor.authorCanales, Faustospa
dc.contributor.authorBeluco, Alexandrespa
dc.date.accessioned2020-07-22T19:13:01Z
dc.date.available2020-07-22T19:13:01Z
dc.date.issued2020
dc.identifier.issn2215-0161spa
dc.identifier.urihttps://hdl.handle.net/11323/6806spa
dc.description.abstractThis method article proposes the establishment of a feasibility space as an objective to be achieved during the development of new technologies to convert energy from renewable resources. The feasibility space can also be a reference when designing an energy system based on renewable resources. The feasibility space is a set of parameter values for the design stage that define the economic and technical feasibility of an energy system or a new technology, which must be satisfied when the energy system comes into operation or when the new technology for converting power goes into operation. The study of possible feasibility spaces allows characterizing energy systems or new technologies as attractive investments, or on the other hand, as unfeasible ventures. - The method proposes to establish a goal to achieve during the development of technologies for energy conversion. - The method provides a benchmark for both the stages of design and development of generation systems and new technologies. - The feasibility space constitutes a planning tool for power systems based on renewable resources of any size.spa
dc.language.isoeng
dc.publisherMethodsXspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectRenewable energyspa
dc.subjectFeasibility spacespa
dc.subjectHybrid energy systemsspa
dc.subjectNew technologiesspa
dc.titleA ’feasibility space’ as a goal to be achieved in the development of new technologies for converting renewable energiesspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.mex.2020.100960spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] J.S. Silva, A. Beluco, Characterization of a feasibility space for a new technology – a case study of wave energy in southern Brazil, Curr. Alternat. Energy v.2 (2) (2018) 112–122 n http://doi.org/10.2174/1570178615666180830102336 .spa
dc.relation.references[2] L.E. Assis, A. Beluco, L.E.S.B. Almeida, On the wave energy potential along the southern coast of Brazil, Int. J. Energy Environ. v.5 (1) (2014) 59–66 n http://doi.org/10.5935/2076-2909.20140002 .spa
dc.relation.references[3] A. Beluco, P.K. Souza, F.P. Livi, J. Caux, Energetic complementarity [of solar energy] with hydropower and the ossibility of storage in batteries and water reservoirs, in: B. Sørensen (Ed.), Solar Energy Storage, 7, Academic Press, 2015, pp. 155–188. chapter https://doi.org/10.1016/B978-0-12-409540-3.00007-4 .spa
dc.relation.references[4] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco, A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions, Sol. Energy v.195 (2020) 703–724 https://doi.org/10.1016/j. solener.2019.11.087.spa
dc.relation.references[5] D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, A review of computer tools for analyzing the integration of renewable energy into various energy systems, Appl. Energy v.87 (2010) 1059–1082 https://doi.org/10.1016/j.apenergy.2009.09.026.spa
dc.relation.references[6] Homer Energy, Software HOMER, Version 2.68 Beta, Micropower Opt. Model (2009) Available at https://www.homerenergy. com/ .spa
dc.relation.references[7] T.W. Lambert, P. Gilman, P.D. Lilienthal, Micropower System Modeling with Homer, in: F.A. Farret, M.G. Simões (Eds.), Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 2005, pp. 379–418 https://doi.org/10.1002/ 0471755621.ch15.spa
dc.relation.references[8] P.D. Lilienthal, T.W. Lambert, P. Gilman, Computer Modeling of Renewable Power Systems, in: C.J. Cleveland (Ed.), Encyclopedia of Energy, 1, Elsevier, Amsterdam, 2004, pp. 633–647. NREL Report CH-710-36771 https://doi.org/10.1016/ B0-12-176480-X/00522-2 .spa
dc.relation.references[9] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Dataset after seven years simulating hybrid energy systems with Homer Legacy, Data Science Journal v.19 (1) (2020) paper n.14 http://doi.org/10.5334/dsj-2020-014.spa
dc.relation.references[10] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Seven years simulating hybrid energy system with Homer Legacy, Mendeley Data, v.2 (2020) http://doi.org/10. 17632/ybxsttf2by.2.spa
dc.relation.references[11] A. Beluco, F.A. During Filho, L.M.R. Silva, J.S. Silva, L.E. Teixeira, G. Vasco, F.A. Canales, E.G. Rossini, J. Souza, G.C. Daronco, A. Risso, Seven years simulating hybrid energy systems with Homer Legacy, Mendeley Data, v.2, File #09-Silva-Beluco2018.hmr (2020) http://dx.doi.org/10.17632/ybxsttf2by.2#file-43e56b20-0130-4036-b447-8952020eee9f.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal