Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Álvarez, Álvarospa
dc.contributor.authorViloria-Marimon, Orlando M.spa
dc.contributor.authorCoronado-Hernández, Oscar E.spa
dc.contributor.authorVélez-Pereira, Andrés M.spa
dc.contributor.authorTesfagiorgis, Kibrewossenspa
dc.contributor.authorCoronado-Hernandez, Jairo R.spa
dc.date.accessioned2020-08-05T19:17:19Z
dc.date.available2020-08-05T19:17:19Z
dc.date.issued2019-02-20
dc.identifier.issn2073-4441spa
dc.identifier.urihttps://hdl.handle.net/11323/6887spa
dc.description.abstractIn Colombia, daily maximum multiannual series are one of the main inputs for design streamflow calculation, which requires performing a rainfall frequency analysis that involves several prior steps: (a) requesting the datasets, (b) waiting for the information, (c) reviewing the datasets received for missing or data different from the requested variable, and (d) requesting the information once again if it is not correct. To tackle these setbacks, 318 rain gauges located in the Colombian Caribbean region were used to first evaluate whether or not the Gumbel distribution was indeed the most suitable by performing frequency analyses using three different distributions (Gumbel, Generalized Extreme Value (GEV), and Log-Pearson 3 (LP3)); secondly, to generate daily maximum isohyetal maps for return periods of 2, 5, 10, 20, 25, 50, and 100 years; and, lastly, to evaluate which interpolation method (IDW, spline, and ordinary kriging) works best in areas with a varying density of data points. GEV was most suitable in 47.2% of the rain gauges, while Gumbel, in spite of being widely used in Colombia, was only suitable in 34.3% of the cases. Regarding the interpolation method, better isohyetals were obtained with the IDW method. In general, the areal maximum daily rainfall estimated showed good agreement when compared to the true values.spa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceWaterspa
dc.subjectIsohyetal mapspa
dc.subjectInterpolation methodspa
dc.subjectIDEAMspa
dc.subjectDesign rainfallspa
dc.subjectStationary frequency analysisspa
dc.subjectStormwater managementspa
dc.titleIsohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Regionspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/w11020358spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988; pp. 350–376.spa
dc.relation.references2. Bedient, P.B.; Huber, W.C. Hydrology and Floodplain Analysis; Prentice-Hall: Upper Saddle River, NJ, USA, 2002; pp. 168–224.spa
dc.relation.references3. Vargas, M.R.; Díaz-Granados, M. Colombian Regional Synthetic IDF Curves. Master’s Thesis, University of Los Andes, Bogotá, Colombia, 1998.spa
dc.relation.references4. IDEAM; PNUD; MADS; DNP; CANCILLERÍA. New Scenarios of Climate Change for Colombia 2011–2100 Scientific Tools for Department-Based Decision Making—National Emphasis: 3rd National Bulletin on Climate Change. 2015. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/ documento_nacional_departamental.pdf (accessed on 7 September 2018).spa
dc.relation.references5. IDEAM. Intensity-Duration-Frequency Curves (IDF). Available online: http://www.ideam.gov.co/curvasidf (accessed on 18 March 2018).spa
dc.relation.references6. Ministry of Housing, City, and Development (MinVivienda), Republic of Colombia. Resolution 0330 of 8 June 2017, Technical Guidelines for the Sector of Potable Water and Basic Sanitation (RAS). 2017. Available online: http://www.minvivienda.gov.co/ResolucionesAgua/0330%20-%202017.pdf (accessed on 7 September 2018).spa
dc.relation.references7. Liu, Y.; Zhang, W.; Shao, Y.; Zhang, K. A Comparison of Four Precipitation Distribution Models Used in Daily Stochastic Models. Adv. Atmos. Sci. 2011, 28, 809–820. [CrossRef]spa
dc.relation.references8. Chowdhury, A.F.M.K.; Lockart, N.; Willgoose, G.; Kuczera, G.; Kiem, A.S.; Parana Manage, N. Development and evaluation of a stochastic daily rainfall model with long-term variability. Hydrol. Earth Syst. Sci. 2017, 21, 6541–6558. [CrossRef]spa
dc.relation.references9. Pizarro, R.; Ingram, B.; Gonzalez-Leiva, F.; Valdés-Pineda, R.; Sangüesa, C.; Delgado, N.; García-Chevesich, P.; Valdés, J.B. WEBSEIDF: A Web-Based System for the Estimation of IDF Curves in Central Chile. Hydrology 2018, 5, 40. Available online: https://www.mdpi.com/2306-5338/5/3/40 (accessed on 25 January 2019). [CrossRef]spa
dc.relation.references10. Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J. Hydrol. 2015, 3, 424–443. [CrossRef]spa
dc.relation.references11. Seo, Y.; Hwang, J.; Kim, B. Extreme Precipitation Frequency Analysis Using a Minimum Density Power Divergence Estimator. Water 2017, 9, 81. [CrossRef]spa
dc.relation.references14. Ministry of Public Development, General Department of Water, Republic of Chile. Maximum Precipitations for 1, 2, and 3 Days. 1990. Available online: http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/ 6582/DGA-HUMED32.pdf?sequence=1&isAllowed=y (accessed on 25 January 2019).spa
dc.relation.references15. Ministry of Development. State Secretary of Infrastructure and Transport, General Direction of Roads. Daily Maximum Rainfall in Peninsular Spain. 1999. Available online: http://epsh.unizar.es/~{}serreta/ documentos/maximas_Lluvias.pdf (accessed on 26 January 2019).spa
dc.relation.references16. Liaw, C.-H.; Chiang, Y.-C. Dimensionless Analysis for Designing Domestic Rainwater Harvesting Systems at the Regional Level in Northern Taiwan. Water 2014, 6, 3913–3933. [CrossRef]spa
dc.relation.references17. U.S. Department of Commerce (USDOC). Technical Paper No. 40 (TP-40), Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; Weather Bureau Technical Papers: Washington, DC, USA, 1961. 18. Jaramillo-Robledo, A. Lluvias máximas en 24 horas para la región Andina de Colombia (24-hour maximum rainfall for the Colombian Andean region). Cenicafé 2005, 56, 250–268. 19. Gutiérrez Jaraba, J.; Pérez Márquez, F.; Angulo Blanquicett, G.; Chiriboga Gavidia, G.; Valdés Cervantes, L. Determination of the Intensity-Duration-Frequency (IDF) Curves for the City of Cartagena de Indias for the period between 1970 and 2015. In Proceedings of the Fifteenth LACCEI International Multi-Conference for Engineering, Education, and Technology: Global Partnerships for Development and Engineering Education, Boca Raton, FL, USA, 19–21 July 2017.spa
dc.relation.references20. Pulgarín Dávila, E.G. Regional Equations for the Estimation of the Intensity-Duration-Frequency Curves based on the Rainfall Scale Properties (Colombian Andean Region). Master’s Thesis, National University of Colombia, Bogotá, Colombia, 2009.spa
dc.relation.references21. Acosta Castellanos, P.M.; Sierra Aponte, L.X. IDF construction methods’ evaluation, from probability distributions and adjustment’s parameters. Revista Facultad Ingeniería 2013, 22, 25–33. [CrossRef]spa
dc.relation.references22. Becerra-Oviedo, J.A.; Sánchez-Mazorca, L.F.; Acosta-Castellanos, P.M.; Díaz-Arévalo, J.L. Regionalization of IDF curves for the use of hydrometeorological models in the Western Sabana of Cundinamarca department. Revista Ingeniería Región 2015, 14, 143–150. [CrossRef]spa
dc.relation.references23. Muñoz, B.J.E.; Zamudio, H.E. Regionalización de Ecuaciones Para el Cálculo de Curvas de Intensidad, Duración y Frecuencia Mediante Mapas de Isolíneas en el Departamento de Boyacá (Regionalization of the Equations for the Calculation of the IDF Curves through Isohyetals Maps in the Department of Boyacá). Available online: http://www.scielo.org.co/pdf/tecn/v22n58/0123-921X-tecn-22-58-31.pdf (accessed on 25 January 2019).spa
dc.relation.references24. Hydrographic and Oceanographic Research Center (CIOH). General Circulation of the Atmosphere in Colombia. 2010. Available online: https://www.cioh.org.co/meteorologia/Climatologia/01- InfoGeneralClimatCaribeCol.pdf (accessed on 7 August 2018).spa
dc.relation.references25. Poveda, G.; Jaramillo, A.; Gil, M.M.; Quinceno, N.; Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [CrossRef]spa
dc.relation.references26. Waylen, P.; Poveda, G. El Niño-Southern Oscillation and aspects of western South American hydro-climatology. Hydrol. Process 2002, 16, 1247–1260. [CrossRef]spa
dc.relation.references27. Poveda, G.; Álvarez, D.M.; Rueda, O.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 2011, 36, 2233–2249. [CrossRef]spa
dc.relation.references28. Hoyos, N.; Escobar, J.; Restrepo, J.C.; Arango, A.M.; Ortiz, J.C. Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 2013, 39, 16–25. [CrossRef]spa
dc.relation.references29. Ramírez-Cerpa, E.; Acosta-Coll, M.; Vélez-Zapata, J. Analysis of the climatic conditions for short term precipitation in urban areas: A case study Barranquilla, Colombia. Idesia 2017, 32, 87–94.spa
dc.relation.references30. Schneider, L.E.; McCuen, R.H. Statistical guidelines for curve number generation. J. Irrig. Drain. Eng. 2005, 131, 282–290. [CrossRef]spa
dc.relation.references31. Macvicar, T.H. Frequency Analysis of Rainfall Maximums for Central and South Florida, Technical Publication # 81-3; South Florida Water Management District: West Palm Beach, FL, USA, 1981.spa
dc.relation.references32. Ali, A.; Abtew, W. Regional Rainfall Frequency Analysis for Central and South Florida. Technical Publication WRE#380; South Florida Water Management District: West Palm Beach, FL, USA, 1999.spa
dc.relation.references33. Pathak, C.S. Frequency Analysis of Rainfall Maximums for Central and South Florida, Technical Publication EMA # 390; South Florida Water Management District: West Palm Beach, FL, USA, 2001.spa
dc.relation.references34. Obeysekera, J.; Salas, J.D. Quantifying the uncertainty of design floods under nonstationary conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [CrossRef]spa
dc.relation.references35. Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [CrossRef]spa
dc.relation.references36. Faber, B. Current methods for hydrologic frequency analysis. In Proceedings of the Workshop on Nonstationarity, Hydrologic Frequency Analysis, and Water Management, Colorado Water Institute Information Series No. 109, Boulder, CO, USA, 13–15 January 2010; pp. 33–39.spa
dc.relation.references37. Haan, C.T. Statistical Methods in Hydrology; The Iowa State University Press: Ames, IA, USA, 1977; pp. 97–158. 38. McCuen, R.H. Microcomputer Applications in Statistical Hydrology; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; pp. 58–69.spa
dc.relation.references39. Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Kluwe Academic Dordrecht: London, UK, 1988.spa
dc.relation.references40. Chin, D.A. Water-Resources Engineering, 3rd ed.; Pearson: London, UK, 2013; pp. 344–395.spa
dc.relation.references41. Gumbel, E.J. The return period of flood flows. Ann. Math. Stat. 1941, 2, 163–190. [CrossRef]spa
dc.relation.references42. Gumbel, E.J. Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures; U.S. Dept. of Commerce, National Bureau of Standards Applied Mathematics Series 33; U.S. Govt. Print. Office: Springfield, VA, USA, 1954.spa
dc.relation.references43. Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [CrossRef]spa
dc.relation.references44. Frechet, M. Sur la loi de probabilité de l’ecart máximum (On the probability law of máximum values). Annales Societe Polonaise Mathematique 1927, 6, 93–116.spa
dc.relation.references45. Weibull, W. A statistical theory of the strength of materials. Proc. Ing. Vetensk Akad. 1939, 51, 5–45.spa
dc.relation.references46. Lazoglou, G.; Anagnostopoulou, C. An Overview of Statistical Methods for Studying the Extreme Rainfalls in Mediterranean. In Proceedings of the 2nd International Electronic Conference on Atmospheric Sciences, Basel, Switzerland, 16–31 July 2017; Available online: http://sciforum.net/conference/ecas2017 (accessed on 4 September 2018).spa
dc.relation.references47. Selaman, O.S.; Said, S.; Putuhena, F.J. Flood Frequency Analysis for Sarawak using Weibull, Gringorten and L-moments Formula. J. Inst. Eng. 2007, 68, 43–52.spa
dc.relation.references48. Chikobvu, D.; Chifurira, R. Modelling of Extreme Minimum Rainfall Using Generalised Extreme Value Distribution for Zimbabwe. S. Afr. J. Sci. 2015, 111. [CrossRef]spa
dc.relation.references49. Millington, M.; Das, S.; Simonovic, S.P. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed under Global Climate Models; Water Resources Research Report (Report # 077); The University of Western Ontario, Department of Civil and Environmental Engineering: London, ON, Canada, 2011. Available online: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1039&context=wrrr (accessed on 7 May 2018).spa
dc.relation.references50. Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. J. Hydrol. Sci. J. 2004, 49, 610. [CrossRef]spa
dc.relation.references51. Alam, M.A.; Emura, K.; Farnham, C.; Yuan, J. Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate 2018, 6, 9. Available online: http://www.mdpi.com/ 2225-1154/6/1/9 (accessed on 8 August 2018). [CrossRef]spa
dc.relation.references52. U.S. Geological Survey (USGS). Flood-Frequency Analyses, Manual of Hydrology: Part 3, Flood-Flow Techniques; U.S. Government Printing Office: Washington, DC, USA, 1960. Available online: https://pubs.usgs.gov/ wsp/1543a/report.pdf (accessed on 10 September 2017).spa
dc.relation.references53. U.S. Geological Survey (USGS). Theoretical Implications of under Fit Streams, Flood-Flow Techniques; U.S. Government Printing Office: Washington, DC, USA, 1965. Available online: https://pubs.usgs.gov/pp/ 0452c/report.pdf (accessed on 10 September 2017).spa
dc.relation.references54. Lumia, R.; Freehafer, D.A.; Smith, M.J. Magnitude and Frequency of Floods in New York: U.S. Geological Survey Scientific Investigations Report 2006–5112. 2006. Available online: https://pubs.usgs.gov/sir/2006/ 5112/SIR2006-5112.pdf (accessed on 10 September 2018).spa
dc.relation.references55. Webster, V.L.; Stedinger, J. Log-Pearson Type 3 Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12. [CrossRef]spa
dc.relation.references56. Greis, N.P. Flood frequency analysis: A review of 1979–1982. Rev. Geophys. 1983, 21, 699–706. [CrossRef]spa
dc.relation.references57. Vogel, R.M.; McMahon, T.A.; Chiew, F.H.S. Floodflow frequency model selection in Australia. J. Hydrol. 1993, 146, 421–449. [CrossRef]spa
dc.relation.references58. Jam, P.; Singh, V.J. Estimating parameters of EV 1 distribution for flood frequency analysis. J. Am. Water Resour. Assoc. 1987, 23, 59–71. [CrossRef]spa
dc.relation.references59. Ngoc Phien, H. A review of methods of parameter estimation for the extreme value type-1 distribution. J. Hydrol. 1987, 90, 251–268. [CrossRef]spa
dc.relation.references60. Fathi, K.; Bagheri, S.F.; Alizadeh, M.; Alizadeh, M. A study of methods for estimating in the exponentiated Gumbel distribution. J. Stat. Theory Appl. 2017, 16, 81–95. [CrossRef]spa
dc.relation.references61. Sarangi, A.; Cox, C.A.; Madramootoo, C.A. Geostatistical Methods for Prediction of Spatial Variability of Rainfall in a Mountainous Region. Trans. ASAE 2005, 48, 943–954. Available online: http://digitool.library. mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1546993372127~{}978 (accessed on 5 February 2018). [CrossRef]spa
dc.relation.references62. Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [CrossRef]spa
dc.relation.references63. Boer, E.P.J.; De Beursl, K.M.; Hartkampz, A.D. Kriging and thin plate splines for mapping climate variables. J. Appl. Genet. 2001, 3, 146–154. [CrossRef]spa
dc.relation.references64. Gonzalez, A.; Temimi, M.; Khanbilvardi, R. Adjustment to the curve number (NRCS-CN) to account for the vegetation effect on hydrological processes. Hydrol. Sci. J. 2015, 60, 591–605. [CrossRef]spa
dc.relation.references65. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.2506&rep= rep1&type=pdf (accessed on 20 October 2018). [CrossRef]spa
dc.relation.references66. Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia. Fluids 2018, 3, 27. [CrossRef]spa
dc.relation.references67. Wang, D.; Hagen, S.C.S.; Alizad, K. Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida. J. Hydrol. 2012, 480, 125–135. [CrossRef]spa
dc.relation.references68. Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, ACT, Australia, 2008. Available online: https://pdfs.semanticscholar.org/686c/ 29a81eab59d7f6b7e2c4b060b1184323a122.pdf (accessed on 23 August 2018).spa
dc.relation.references69. Mitas, L.; Mitasova, H. Spatial Interpolation. In Geographic Information Systems: Principles, Techniques, Management and Applications, 2nd ed.; Wiley: Longley, PA, USA, 2005; Volume 1, pp. 481–492.spa
dc.relation.references70. Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Earth Environ. Sci. 2017, 9, 354–371. [CrossRef]spa
dc.relation.references71. Curtarelli, M.; Leão, J.; Ogashawara, I.; Lorenzzetti, J.; Stech, J. Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management. Int. J. Geo-Inf. 2015, 4, 220–235. [CrossRef]spa
dc.relation.references72. Simpson, G.; Wu, Y.H. Accuracy and Effort of Interpolation and Sampling: Can GIS Help Lower Field Costs? Int. J. Geo-Inf. 2014, 3, 1317–1333. [CrossRef]spa
dc.relation.references73. Di Piazza, A.; Lo Conti, F.; Viola, F.; Eccel, E.; Noto, L.V. Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water 2015, 7, 1866–1888. [CrossRef]spa
dc.relation.references74. Phillips, D.L.; Dolph, J.; Marks, D. A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteorol. 1992, 58, 119–141. [CrossRef]spa
dc.relation.references75. Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Clim. 2008, 28, 947–959. [CrossRef]spa
dc.relation.references12. Nguyen, V.-T.-B.; Nguyen, T.-H. Statistical Modeling of Extreme Rainfall Processes (SMExRain): A Decision Support Tool for Extreme Rainfall Frequency Analyses. In Proceedings of the 12th International Conference on Hydroinformatics, Incheon, Korea, 21–26 August 2016; Volume 154, pp. 624–630. Available online: https://ac.els-cdn.com/S1877705816319506/1-s2.0-S1877705816319506-main.pdf?_tid= e587b0ac-b681-4a07-9b9f-2850d1d3ddf6&acdnat=1549752522_fca135a461dacf0f9e6e06a9eeef2e48 (accesses on 8 February 2019).spa
dc.relation.references13. Ngoc Phien, H.; Arbhabhirama, A.; Sunchindah, A. Rainfall distribution in northeastern Thailand. Hydrol. Sci. J. 2009, 25, 167–182. [CrossRef]spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal