Show simple item record


dc.creatorPeña Gallardo, Rafael
dc.creatorOspino C., Adalberto
dc.creatorMedina Ríos, Aurelio
dc.date.accessioned2020-08-10T19:19:36Z
dc.date.available2020-08-10T19:19:36Z
dc.date.issued2020-02-21
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11323/6898
dc.description.abstractSolar and wind energy systems, without storage, cannot satisfy variable load demands, but their combined use can help to solve the problem of the balance between generation and consumption. Energetic complementarity studies are useful to evaluate the viability of the use of two or more renewable energy sources with high variability in a specific interval of time in a determined region. In this paper, the monthly energetic complementarity study of solar and wind resources of Colombia is carried out. A novel approach to conduct the study is proposed. A dataset with the average monthly solar radiation and wind speed values is obtained from high-resolution images of renewable resources maps, using image processing algorithms. Then, the dataset is used to calculate the energetic complementarity of the sources employing the negative of the Pearson correlation coefficient. The obtained values are transformed to energetic complementarity maps, previously eliminating the protected areas. The obtained results show that there is a good energetic complementarity in the north and northeastern regions of the country throughout the year. The results indicate that projects related to the joint use of solar and wind generation systems could be developed in these regions.spa
dc.description.abstractLos sistemas de energía solar y eólica, sin almacenamiento, no pueden satisfacer las demandas de carga variable, pero su uso combinado puede ayudar a resolver el problema del equilibrio entre generación y consumo. Los estudios de complementariedad energética son útiles para evaluar la viabilidad del uso de dos o más fuentes de energía renovable con alta variabilidad en un intervalo de tiempo específico en una región determinada. En este artículo, el estudio mensual de complementariedad energética de los recursos solar y eólico de Colombia se lleva a cabo. Se propone un enfoque novedoso para realizar el estudio. Un conjunto de datos con el promedio Los valores mensuales de radiación solar y velocidad del viento se obtienen a partir de imágenes de alta resolución de renovables. mapas de recursos, utilizando algoritmos de procesamiento de imágenes. Luego, el conjunto de datos se utiliza para calcular el complementariedad energética de las fuentes empleando el negativo del coeficiente de correlación de Pearson. Los valores obtenidos se transforman en mapas de complementariedad energética, eliminando previamente la áreas protegidas. Los resultados obtenidos muestran que existe una buena complementariedad energética en el regiones del norte y noreste del país durante todo el año. Los resultados indican que los proyectos relacionados con el uso conjunto de sistemas de generación solar y eólica podrían desarrollarse en estas regiones.spa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceEnergiesspa
dc.subjectEnergetic complementarityspa
dc.subjectImage processing algorithmsspa
dc.subjectResource mapsspa
dc.subjectSolar energyspa
dc.subjectWind energyspa
dc.subjectComplementariedad energéticaspa
dc.subjectAlgoritmos de procesamiento de imágenesspa
dc.subjectMapas de recursosspa
dc.subjectEnergía solarspa
dc.subjectEnergía eólicaspa
dc.titleAn image processing-based method to assess the monthly energetic complementarity of solar and wind energy in Colombiaspa
dc.title.alternativeUn método basado en el procesamiento de imágenes para evaluar la complementariedad energética mensual de la energía solar y eólica en Colombiaspa
dc.typearticlespa
dcterms.references1. Sorrell, S. Reducing Energy Demand: A Review of Issues, Challenges and Approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [CrossRef]spa
dcterms.references2. Claudia Roldán, M.; Martínez, M.; Peña, R. Scenarios for a Hierarchical Assessment of the Global Sustainability of Electric Power Plants in México. Renew. Sustain. Energy Rev. 2014, 33, 154–160. [CrossRef]spa
dcterms.references3. Wei, M.; Patadia, S.; Kammen, D.M. Putting Renewables and Energy Efficiency to Work: How Many Jobs Can the Clean Energy Industry Generate in the US? Energy Policy 2010, 38, 919–931. [CrossRef]spa
dcterms.references4. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [CrossRef]spa
dcterms.references5. Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [CrossRef]spa
dcterms.references6. Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019,spa
dcterms.references8, 729. [CrossRef]spa
dcterms.references7. Peña Gallardo, R.; Ospino Castro, A.; Segundo Ramirez, J.; Rodriguez Hernández, A.; Noriega Angarita, E.; Munoz Maldonado, Y.A. Economic and energy analysis of small capacity grid-connected hybrid photovoltaic-wind systems in Mexico. Int. J. Energy Econ. Policy 2020, 10, 7–17. [CrossRef]spa
dcterms.references8. Pagola, V.; Peña, R.; Segundo, J.; Ospino, A. Rapid Prototyping of a Hybrid PV–Wind Generation System Implemented in a Real-Time Digital Simulation Platform and Arduino. Electronics 2019, 8, 102. [CrossRef]spa
dcterms.references9. Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A Review on the Complementarity of Renewable Energy Sources: Concept, Metrics, Application and Future Research Directions. Sol. Energy 2020, 195, 703–724. [CrossRef]spa
dcterms.references10. Bagatini, M.; Benevit, M.G.; Beluco, A.; Risso, A. Complementarity in Time between Hydro, Wind and Solar Energy Resources in the State of Rio Grande Do Sul, in Southern Brazil. Energy Power Eng. 2017, 9, 515–526. [CrossRef]spa
dcterms.references11. Beluco, A.; de Souza, P.K.; Krenzinger, A. A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renew. Energy 2008, 33, 2157–2165. [CrossRef]spa
dcterms.references12. François, B.; Borga, M.; Creutin, J.D.; Hingray, B.; Raynaud, D.; Sauterleute, J.F. Complementarity between Solar and Hydro Power: Sensitivity Study to Climate Characteristics in Northern-Italy. Renew. Energy 2016, 86, 543–553. [CrossRef]spa
dcterms.references13. Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Lacal-Arántegui, R. Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy. A Monte Carlo Approach. Renew. Energy 2014, 63, 576–586. [CrossRef]spa
dcterms.references14. Miglietta, M.M.; Huld, T.; Monforti-Ferrario, F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217–234. [CrossRef]spa
dcterms.references15. Beluco, A.; Kroeff de Souza, P.; Krenzinger, A. A Method to Evaluate the Effect of Complementarity in Time between Hydro and Solar Energy on the Performance of Hybrid Hydro PV Generating Plants. Renew. Energy 2012, 45, 24–30. [CrossRef]spa
dcterms.references16. Stoyanov, L.; Notton, G.; Lazarov, V.; Ezzat, M. Wind and Solar Energies Production Complementarity for Various Bulgarian Sites. In Revue des Energies Renouvelables SMEE’10 Bou Ismail Tipaza 2010; Bou Ismail, Algeria, 2014; pp. 311–325.spa
dcterms.references17. Hoicka, C.E.; Rowlands, I.H. Solar and Wind Resource Complementarity: Advancing Options for Renewable Electricity Integration in Ontario, Canada. Renew. Energy 2011, 36, 97–107. [CrossRef]spa
dcterms.references18. Kunwar, S. Complementarity of Wind, Solar and Hydro Resources for Combating Seasonal Power Shortage in Nepal. In Proceedings of the 4th World Sustainability Forum, Basel, Switzerland, 1–30 November 2014; p. e018. [CrossRef]spa
dcterms.references19. Jerez, S.; Trigo, R.M.; Sarsa, A.; Lorente-Plazas, R.; Pozo-Vázquez, D.; Montávez, J.P. Spatio-Temporal Complementarity between Solar and Wind Power in the Iberian Peninsula. Energy Procedia 2013, 40, 48–57. [CrossRef]spa
dcterms.references20. Xu, L.; Wang, Z.; Liu, Y. The Spatial and Temporal Variation Features of Wind-Sun Complementarity in China. Energy Convers. Manag. 2017, 154, 138–148. [CrossRef]spa
dcterms.references21. Prasad, A.A.; Taylor, R.A.; Kay, M. Assessment of Solar and Wind Resource Synergy in Australia. Appl. Energy 2017, 190, 354–367. [CrossRef]spa
dcterms.references22. Vega-Sanchez, M.A.; Castaneda-Jimenez, P.D.; Pena-Gallardo, R.; Ruiz-Alonso, A.; Morales-Saldana, J.A.; Palacios-Hernandez, E.R. Evaluation of Complementarity of Wind and Solar Energy Resources over Mexico Using an Image Processing Approach. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2017), Ixtapa, Mexico, 8–10 November 2017; pp. 1–5. [CrossRef]spa
dcterms.references23. Shaner, M.R.; Davis, S.J.; Lewis, N.S.; Caldeira, K. Geophysical Constraints on the Reliability of Solar and Wind Power in the United States. Energy Environ. Sci. 2018, 11, 914–925. [CrossRef]spa
dcterms.references24. Jurasz, J.; D ˛abek, P.B.; Ka ´zmierczak, B.; Kies, A.; Wdowikowski, M. Large Scale Complementary Solar and Wind Energy Sources Coupled with Pumped-Storage Hydroelectricity for Lower Silesia (Poland). Energy 2018, 161, 183–192. [CrossRef]spa
dcterms.references25. Bett, P.E.; Thornton, H.E. The Climatological Relationships between Wind and Solar Energy Supply in Britain. Renew. Energy 2016, 87, 96–110. [CrossRef]spa
dcterms.references26. Gburˇcik, V.; Mastilovi´c, S.; Vuˇcini´c, Ž. Assessment of Solar and Wind Energy Resources in Serbia. J. Renew. Sustain. Energy 2013, 5, 041822. [CrossRef]spa
dcterms.references27. Dos Anjos, P.S.; Alves Da Silva, A.S.; Stoši´c, B.; Stoši´c, T. Long-Term Correlations and Cross-Correlations in Wind Speed and Solar Radiation Temporal Series from Fernando de Noronha Island, Brazil. Phys. A Stat. Mech. Appl. 2015, 424, 90–96. [CrossRef]spa
dcterms.references28. Li, W.; Stadler, S.; Ramakumar, R. Modeling and Assessment of Wind and Insolation Resources with a Focus on Their Complementary Nature: A Case Study of Oklahoma. Ann. Assoc. Am. Geogr. 2011, 101, 717–729. [CrossRef]spa
dcterms.references29. Vergara, W.; Deeb, A.; Toba, N.; Cramton, P.; Leino, I.; Benoit, P. Wind Energy in Colombia: A Framework for Market Entry; World Bank: Washington, DC, USA, 2010. [CrossRef]spa
dcterms.references30. Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic Energy in Colombia: Current Status, Inventory, Policies and Future Prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [CrossRef]spa
dcterms.references31. SIEL. Informe Mensual de Variables de Generación y del Mercado Electrico Colombiano-Marzo de 2018; Ministry Minas y Energía: Bogota, Colombia, 2018.spa
dcterms.references32. Olaya, Y.; Arango-Aramburo, S.; Larsen, E.R. How Capacity Mechanisms Drive Technology Choice in Power Generation: The Case of Colombia. Renew. Sustain. Energy Rev. 2016, 56, 563–571. [CrossRef]spa
dcterms.references33. Paez, A.F.; Maldonado, Y.M.; Castro, A.O.; Hernandez, N.; Conde, E.; Pacheco, L.; Gonzalez, W.; Sotelo, O. Future Scenarios and Trends of Energy Demand in Colombia Using Long-Range Energy Alternative Planning. Int. J. Energy Econ. Policy 2017, 7, 178–190.spa
dcterms.references34. Han, S.; Zhang, L.N.; Liu, Y.Q.; Zhang, H.; Yan, J.; Li, L.; Lei, X.H.; Wang, X. Quantitative Evaluation Method for the Complementarity of Wind–Solar–Hydro Power and Optimization of Wind–Solar Ratio. Appl. Energy 2019, 236, 973–984. [CrossRef]spa
dcterms.references35. Gómez-Navarro, T.; Ribó-Pérez, D. Assessing the Obstacles to the Participation of Renewable Energy Sources in the Electricity Market of Colombia. Renew. Sustain. Energy Rev. 2018, 90, 131–141. [CrossRef]spa
dcterms.references36. IDEAM. Atlas Interactivo de Recursos Naturales de Colombia; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2019.spa
dcterms.references37. Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59. [CrossRef]spa
dcterms.references38. Castillo, Y.; Gutiérrez, M.C.; Vanegas-Chamorro, M.; Valencia, G.; Villicaña, E. Rol de Las Fuentes No Convencionales de Energía En El Sector Eléctrico Colombiano. Prospectiva 2015, 13, 39–51. [CrossRef]spa
dcterms.references39. Instituto de Hidrología Meteorología y Estudios Ambientales. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; Instituto de Hidrología Meteorología y Estudios Ambientales: Bogota, Colombia, 2015. [CrossRef]spa
dcterms.references40. Banda, D.; Pena, R.; Gutierrez, G.; Juarez, E.; Visairo, N.; Nunez, C. Feasibility Assessment of the Installation of a Photovoltaic System as a Battery Charging Center in a Mexican Mining Company. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2014), Ixtapa, Mexico, 5–7 November 2014. [CrossRef]spa
dcterms.references41. De la Cruz Buelvas, J.; Valencia Ochoa, G.; Vanegas Chamorro, M. Statistical Study of Wind Speed and Direction in the Departments of Atlántico and Bolivar in Colombia. Ingeniare 2018, 26, 319–328. [CrossRef]spa
dcterms.references42. Congreso de Colombia. Ley 1715 de 2014—Por Medio de la Cual se Regula la Integración de las Energías Renovables no Convencionales al Sistema Energético Nacional; Congreso de Colombia: Bogota, Colombia, 2014.spa
dcterms.references43. UPME. Informe de gestión 2018, Ministerio de Minas y Energía, República de Colombia; Ministry Minas y Energía: Bogota, Colombia, 2018.spa
dcterms.references44. UPME, IDEAM. Atlas de Viento y Enegía Eólica de Colombia; UPME-IDEAM: Bogota, Colombia, 2010.spa
dcterms.references45. Hernandez, A.; Pena, R.; Mendez, W.; Visairo, N.; Nunez, C. Wind Resource Assessment in the Surroundings of San Luis Potosi, Mexico. In Proceedings of the 2013 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2013), Mexico City, Mexico, 13–15 November 2013. [CrossRef]spa
dcterms.references46. Canavire-Bacarreza, G.; Diaz-Gutierrez, J.E.; Hanauer, M.M. Unintended Consequences of Conservation: Estimating the Impact of Protected Areas on Violence in Colombia. J. Environ. Econ. Manag. 2018, 89, 46–70. [CrossRef]spa
dcterms.references47. Congreso de Colombia. Ley 165 de 1994—Por Medio de la Cual se Aprueba el “Convenio Sobre la Diversidad Biológica; Congreso de Colombia: Bogota, Colombia, 1994.spa
dcterms.references48. Lenis, Y.R. La Historia de Las Áreas Protegidas En Colombia, Sus Firmas de Gobierno y Las Alternativas Para La Gobernanza. Rev. Soc. Econ. 2014, 27, 155–175.spa
dcterms.references49. SINAP. Mapa SINAP—Sistema Nacional de Áreas Protegidas de Colombia; Sistema Nacional de Áreas Protegidas: Bogota, Colombia, 2018.spa
dcterms.references50. Peña Gallardo, R.; Ospino Castro, A. An Assessment Study of the Monthly Complementarity of Renewable Energy Resources in Colombia. In Proceedings of the 7th International Workshop Advances in Cleaner Production, Barranquilla, Colombia, 21–22 June 2018; pp. 1–11.spa
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionspa
dc.source.urlhttps://www.mdpi.com/1996-1073/13/5/1033/htmspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/en13051033


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal