Show simple item record

dc.creatorCoronado-Hernández, Oscar E.
dc.creatorMerlano-Sabalza, Ernesto
dc.creatorDíaz-Vergara, Zaid
dc.creatorCoronado-Hernandez, Jairo R.
dc.description.abstractFrequency analysis of extreme events is used to estimate the maximum rainfall associated with different return periods and is used in planning hydraulic structures. When carrying out this type of analysis in engineering projects, the hydrological distributions that best fit the trend of maximum 24 h rainfall data are unknown. This study collected maximum 24 h rainfall records from 362 stations distributed throughout Colombia, with the goal of guiding hydraulic planners by suggesting the probability distributions they should use before beginning their analysis. The generalized extreme value (GEV) probability distribution, using the weighted moments method, presented the best fits of frequency analysis of maximum daily precipitation for various return periods for selected rainfall stations in
dc.description.abstractEl análisis de frecuencia de eventos extremos se utiliza para estimar la precipitación máxima asociada con diferentes períodos de retorno y se utiliza en la planificación de estructuras hidráulicas. Al realizar este tipo de análisis en proyectos de ingeniería, las distribuciones hidrológicas que mejor se ajustan a la tendencia de máxima Se desconocen los datos de precipitación de 24 h. Este estudio recopiló registros de precipitación máxima de 24 h de 362 estaciones distribuidos por toda Colombia, con el objetivo de orientar a los planificadores hidráulicos sugiriendo distribuciones de probabilidad que deben usar antes de comenzar su análisis. El extremo generalizado La distribución de probabilidad del valor (GEV), utilizando el método de momentos ponderados, presentó los mejores ajustes de análisis de frecuencia de la precipitación máxima diaria para varios períodos de retorno para lluvias seleccionadas estaciones en
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.subjectMaximum rainfallspa
dc.subjectProbability distributionspa
dc.subjectPrecipitación máximaspa
dc.subjectDistribución de probabilidadspa
dc.titleSelection of hydrological probability distributions for extreme rainfall events in the regions of Colombiaspa
dc.title.alternativeSelección de distribuciones de probabilidad hidrológica para eventos de lluvia extrema en las regiones de Colombiaspa
dcterms.references1. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: Bogotá, Colombia,
dcterms.references2. Frechet, M. Sur la loi de probabilité de l’ecart máximum (On the probability law of máximum values). Ann. de la Soc. Pol. de Math. 1927, 6, 93–
dcterms.references3. Maidment, D. Handbook of Hydrology; Mc Graw-Hill: New York, NY, USA,
dcterms.references4. Clarke, R.T.; Dias de Paiva, R.; Bertacchi, C. Comparison of methods for analysis of extremes when records are fragmented: A case study using Amazon basin rainfall data. J. Hydrol. 2009, 368, 26–29. [CrossRef]spa
dcterms.references5. Bedient, P.B.; Huber, W.C. Hydrology and Floodplain Analysis. Prentice-Hall: Upper Saddle River, NJ, USA, 2002; pp. 168–
dcterms.references6. Arnaez, J.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res. 2007, 93, 324–334. [CrossRef]spa
dcterms.references7. Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias. Colomb. Fluids 2018, 3, 27. [CrossRef]spa
dcterms.references8. Obeysekera, J.; Salas, J.D. Quantifying the uncertainty of design floods under nonstationary conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [CrossRef]spa
dcterms.references9. Obeysekera, J.; Salas, J.D. Frequency of recurrent extremes under nonstationarity. J. Hydrol. Eng. 2016, 21, 04016005. [CrossRef]spa
dcterms.references10. Yang, T.; Shao, Q.; Hao, Z.-C.; Chen, X.; Zhang, Z.; Xu, C.-Y.; Sun, L. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J. Hydrol. 2009, 380, 386–405. [CrossRef]spa
dcterms.references11. Nunn, Dwight. Ingetec, S.A-Empresa de Acueducto y Alcantarillado de Bogotá. In Estimating of Maximum Daily Precipitation of Tributaries of Bogotá River; Ingetec: Bogotá, Colombia,
dcterms.references12. Pathak, C.S. Frequency analysis of rainfall maximums for Central and South Florida, Technical Publication EMA # 390. 2001. Available online: tech_pubs/ema-390.pdf (accessed on 12 March 2018).spa
dcterms.references13. Gumbel, E.J. The return period of flood flows. Ann. Math. Stat. 1941, 2, 163–190. [CrossRef]spa
dcterms.references14. Weibull, W. A statistical theory of the strength of materials. In Proceedings of the Ingeniors Vetenskaps Akademien (The Royal Swedish Institute for Engineering Research) No. 51, Stockholm, Sweden, 1 Januray 1939; 1939; pp. 5–
dcterms.references15. Grego, J.M.; Yates, P.A. Point and standard error estimation for quantiles of mixed flood distribution. J. Hydrol. 2010, 391, 289–301. [CrossRef]spa
dcterms.references16. Koutrouvelisa, I.A.; Canavos, G.C. A comparison of moment-based methods of estimation for thelogPearson type 3 distribution. J. Hydrol. 2000, 234, 71–81. [CrossRef]spa
dcterms.references17. Xuewu, J.; Jing, D.; Shen, H.W.; Salas, J.D. Plotting positions for Pearson type-III distribution. J. Hydrol. 2003, 74, 1–29. [CrossRef]spa
dcterms.references18. Makkonen, L. Problems in the extreme value analysis. Struct. Saf. 2006, 30, 405–419. [CrossRef]spa
dcterms.references19. Kolmogorov, A.N. Sulla determinazione empirica di una legge di distribuzione. G. dell’Instituto Ital. degli Attuari 1933, 4, 83–
dcterms.references20. Smirnov, N.V. Estimate of deviation between empirical distribution functions in two independent samples. Bull. Mosc. Univ. 1939, 2, 3–
dcterms.references21. Smirnov, N.V. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [CrossRef]spa
dcterms.references22. Mahdi, S.; Cenac, M. Estimating Parameters of Gumbel Distribution using the Methods of Moments, Probability Weighted Moments and Maximum Likelihood. Rev. de Matemáticas Teoría y Apl. 2005, 12, 151–156. [CrossRef]spa
dcterms.references23. Seckin, N.; Yurtal, R.; Haktanir, T.; Dogan, A. Comparison of Probability Weighted Moments and Maximum Likelihood Methods Used in Flood Frequency Analysis for Ceyhan River Basin. Arab. J. Sci. Eng. 2009, 35, 49–
dcterms.references24. Ministerio de Vivienda, Ciudad y Territorio. República de Colombia. Resolution 0330 of 8 June 2017. Available online: (accessed on 20 March 2020).spa
dcterms.references25. Ministerio de Transporte, Instituto Nacional de Vías. República de Colombia. Manual on Drainage Design for Highways. 2009. Available online: documentos-tecnicos/especificaciones-tecnicas/984-manual-de-drenaje-para-carreteras/file (accessed on 20 March 2020).spa
dcterms.references26. Gonzalez-Alvarez, A.; Viloria-Marimón, O.; Coronado-Hernández, O.E.; Vélez-Pereira, A.; Tesfagiorgis, K.; Coronado-Hernández, J. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water 2019, 11, 358. [CrossRef]spa
dcterms.references27. Krishnamoorthy, K.; Peng, J. Some properties of the exact and score methods for binomial proportion and sample size calculation. Commun. Stat. Simul. Comput. 2007, 36, 1171–1186. [CrossRef]spa
dcterms.references28. El Adlouni, S.; Bobée, B. Hydrological Frequency Analysis Using HYFRAN-PLUS Software. User’s Guide available with the software DEMO 2015. Available online: indexhyfranplus3.html (accessed on 20 March 2020).spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal