Mostrar el registro sencillo del ítem

dc.contributor.authorHoffmann Sampaio, Carlosspa
dc.contributor.authorMonteiro Ambrós, Wesleispa
dc.contributor.authorCazacliu, Bogdanspa
dc.contributor.authorOliva Moncunill, Josepspa
dc.contributor.authorSelemane José, Davidspa
dc.contributor.authorMiltzarek, Gerson Luisspa
dc.contributor.authorSchadach de Brum, Irineu Antôniospa
dc.contributor.authorPetter, Carlos Otáviospa
dc.contributor.authorZanetti Fernandes, Euníriospa
dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.date.accessioned2020-09-03T18:08:08Z
dc.date.available2020-09-03T18:08:08Z
dc.date.issued2020-08-31
dc.identifier.issn2075-163Xspa
dc.identifier.urihttps://hdl.handle.net/11323/7055spa
dc.description.abstractThis paper proposes pre-beneficiation studies by air jigs of the coal layers from a Moatize coal deposit. Pre-beneficiation, also called destoning, removes tailings before the beneficiation plant. The air jigs operate in the same granulometric size range as the heavy-media cyclones (HMCs) that are installed in the preparation plant. With the destoning, the heavy-media circuit operates with a lower coal feed and higher organic matter contents, increasing its cutting efficiency and lowering operational costs. The use of air jigs reduces the total water consumption in the plant, which is especially important for the region where the plant is installed, as water is particularly scarce. Four coal layers of the Moatize coal deposit were studied, which are currently exploited in the mine. As main results of the study, it is possible to say that the concentration of lights (feed of the preparation plant) and heavies (waste fraction) in air jigs can be carried out with reasonable efficiencies for all coal layers studied, making air jigs a feasible option for coal destoning.spa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceMineralsspa
dc.subjectAir jigspa
dc.subjectDestoningspa
dc.subjectWaste separationspa
dc.subjectMoatize coalspa
dc.titleDestoning the moatize coal seam, Mozambique, by Dry Jiggingspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/min10090771spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Statista. Global Coke Production 1993 to 2018 (in Million Metric Tons). Available online: https://www.statista. com/statistics/267891/global-coke-production-since-1993 (accessed on 27 July 2020).spa
dc.relation.references2. Statista. World Crude Steel Production from 2012 to 2019 (in Million Metric Tons). Available online: https://www.statista.com/statistics/267264/world-crude-steel-production/ (accessed on 27 July 2020).spa
dc.relation.references3. Díez, M.A.; Alvarez, R.; Barriocanal, C. Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking. Int. J. Coal Geol. 2002, 50, 389–412. [CrossRef]spa
dc.relation.references4. Hatton, W.; Fardell, A. New discoveries of coal in Mozambique: Development of the coal resource estimation methodology for International Resource Reporting Standards. Int. J. Coal Geol. 2012, 89, 2–12. [CrossRef]spa
dc.relation.references5. Vasconcelos, L.; Muchangos, A.; Siquela, E. Elementos traços em cinzas de carvões aflorantes de Moçambique. Geochim. Bras. 2009, 23, 344–361.spa
dc.relation.references6. Cairncross, B. An overview of the Permian (Karoo) coal deposits of southern Africa. Afr. Earth Sci. 2001, 33, 529–562. [CrossRef]spa
dc.relation.references7. Lakshminarayana, G. Geology of Barcode type coking coal seams, Mecondezi sub-basin, Moatize Coalfield, Mozambique. Int. J. Coal Geol. 2015, 146, 1–13. [CrossRef]spa
dc.relation.references8. Vasconcelos, L. Geologia do Carvão: Caracterização geológica da Bacia de Moatize-Moçambique; UEM Universida de Eduardo Mondlane: Maputo, Mozambique, 2005. (In Portuguese)spa
dc.relation.references9. Vale. 2018. Available online: http://www.vale.com/mozambique/PT/business/mining/coal/moatize-coalmine/Paginas/default.aspx (accessed on 10 November 2018).spa
dc.relation.references10. José, D.S. Caracterização Tecnológica de Carvão ROM da Mina de Moatize–Moçambique Para o “Destoning”, Visando Seu Beneficiamento. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2018; p. 223. (In Portuguese)spa
dc.relation.references11. Wills, B.A.; Finch, J.A. Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2016.spa
dc.relation.references12. Charan, G.T.; Chattopadhyay, U.S.; Singh, K.M.P.; Kabiraj, S.; Haldar, D.D. Pilot-Scale Baum Jig Washing for Beneficiation of a High-Ash Indian Non coking Coal. Int. J. Coal Prep. Util. 2009, 29, 130–139. [CrossRef]spa
dc.relation.references13. Dwari, R.K.; Rao, K.H. Dry beneficiation of coal—A review. Miner. Process. Extr. Metall. Rev. 2007, 28, 177–234. [CrossRef]spa
dc.relation.references14. Xia, W.; Xie, G.; Peng, Y. Recent advances in beneficiation for low rank coals. Powder Technol. 2015, 277, 206–221. [CrossRef]spa
dc.relation.references15. Sampaio, C.H.; Aliaga, W.; Pacheco, E.T.; Petter, E.; Wotruba, H. Coal beneficiation of Candiota mine by dry jigging. Fuel Process. Technol. 2008, 89, 198–202. [CrossRef]spa
dc.relation.references16. Boylu, F.; Talı, E.; Çetinel, T.; Çelik, M.S. Effect of fluidizing characteristics on upgrading of lignitic coals in gravity based air jig. Int. J. Miner. Process. 2014, 129, 27–35. [CrossRef]spa
dc.relation.references17. Charan, T.G.; Chattopadhyay, U.S.; Singh, K.M.P.; Kabiraj, S.K.; Haldar, D.D. Beneficiation of high-ash, Indian non-coking coal by dry jigging. Min. Metall. Explor. 2011, 28, 21–23.spa
dc.relation.references18. Boylu, F.; Çinku, K.; Çetinel, T.; Karaka¸s, F.; Güven, O.; Karaa ˘gaçlio ˘glu, I.E.; Çelik, M.S. Effect of coal moisture on the treatment of a lignitic coal through a semi-pilot-scale pneumatic stratification jig. Int. J. Coal Prep. Util. 2015, 35, 143–154. [CrossRef]spa
dc.relation.references19. Ihedioha, J.I.; Okorie-kanu, C.O.; Iwuogo, U.M. Upgrading coal using a pneumatic density based separator. Int. J. Coal Prep. Util. 2008, 28, 51–67.spa
dc.relation.references20. Zhao, Y.; Fu, Z.; Yang, L.Z.; Duan, C.; Song, S.; Cai, L. Fine Coal Dry Cleaning using an Air Dense Medium Fluidized Bed with Improved Magnetite Medium. Procedia Eng. 2015, 102, 1133–1141. [CrossRef]spa
dc.relation.references21. Fu, Z.; Zhao, Y.; Yang, X.; Luo, Z.; Zhao, J. Fine coal beneficiation via air-dense medium fluidized beds with improved magnetite powders. Int. J. Coal Prep. Util. 2016, 36, 55–68. [CrossRef]spa
dc.relation.references22. Xu, X.; Chen, J.; Luo, Z.; Tang, L.; Zhao, Y.; Lv, B.; Fu, Y.; Chen, C. Fluidization Characteristics of Air Dense Medium Agitated Separation Fluidized Bed with Different Distributors. Miner. Process. Extr. Metall. Rev. 2019, 40, 299–306. [CrossRef]spa
dc.relation.references23. Nienhaus, K.; Pretz, T.; Wotruba, H. Sensor Technologies: Impulses for the Raw Materials Industry; Shaker Verlag GmbH: Düren, Germany, 2014; p. 476.spa
dc.relation.references24. Duan, C.-L.; He, Y.-Q.; Zhao, Y.-M.; He, J.-F.; Wen, B.F. Development and application of the active pulsing air classification. Proceed Earth Planet. Sci. 2009, 1, 667–672.spa
dc.relation.references25. Das, A.; Sarkar, B. Advanced gravity concentration of fine particles: A review. Miner. Process.Extr. Metall. Rev. 2018, 39, 359–394. [CrossRef]spa
dc.relation.references26. Weinstein, R.; Snoby, R. Advances in dry jigging improves coal quality. Min. Eng. 2007, 1, 29–34.spa
dc.relation.references27. Snoby, R.; Thompson, K.; Mishra, S.; Snoby, B. Dry jigging coal: Case history performance. In Proceedings of the 2009 SME Annual Meeting, Denver, CO, USA, 22–25 February 2009.spa
dc.relation.references28. Ambrós, W.M.; Sampaio, C.H.; Cazacliu, B.G.; Conceição, P.N.; Reis, G.S. Some observations on the influence of particle size and size distribution on stratification in pneumatic jigs. Powder Technol. 2019, 342, 594–606. [CrossRef]spa
dc.relation.references29. Bird, B.M. Interpretation of float-and-sink data, Anais, II. Int. Conf. Bitum. Coal 1928, 2, 82–111.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal