Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Ipia, Nicolásspa
dc.contributor.authorBolaños-Chamorro, Kevin Camilospa
dc.contributor.authorAcuña-Bedoya, Jawer Davidspa
dc.contributor.authorMachuca-Martínez, Fidermanspa
dc.contributor.authorCastilla-Acevedo, Samirspa
dc.date.accessioned2020-09-07T19:15:45Z
dc.date.available2020-09-07T19:15:45Z
dc.date.issued2020-07-27
dc.identifier.urihttps://hdl.handle.net/11323/7074spa
dc.description.abstractThe influence of the addition of cations on the adsorption of [Fe(CN)6] 3− on granular activated carbon (GAC) was evaluated. The tests were performed at three pH values (3, 8.2, and 13) to determine the repulsion or electrostatic affinity between the adsorbent and adsorbate. Afterward, the cations (K+, Ca2+, and Al3+) at three pollutant-cation molar ratios (1:1, 1:10, and 1:50) were added to the system, and the influence of those was identified by the changes in the adsorption efficiency. The results show that the higher removal (%) was obtained at pH 13 without neither the presence of iron precipitates nor the liberation of HCN. The adsorption of [Fe(CN)6] 3- was enhanced by the addition of K + at 1:10 and 1:50 mol ratio since higher removals were achieved (75.27 % and 76.81 % respectively) than those obtained in the absence of cations (64.18 %) or in the presence of Ca2+ (67.58 %) and Al3+ (65.13 %) at a 1:10 mol ratio. The behavior in adsorption in the presence of cations shows that the ion-pair adsorption mechanism can describe the physical phenomenon, showing an increase in the fraction removed and the rate of adsorption with increasing cation charge. The adsorption kinetics using K+ with a 1:10 pollutant-cation molar ratio was fitted to the Lagergren pseudo-first-order model. The GAC adsorption capacity describes the pollutant adsorption rate with the predominance of physical interactions. The experimental data were fitted by the Langmuir and Freundlich isotherms, indicating a monolayer adsorption phenomenon consistent with the previously proposed ion-pair adsorption mechanism.spa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.subjectGold miningspa
dc.subjectWastewater treatmentspa
dc.subjectCationsspa
dc.subjectAdsorptionspa
dc.subjectIon-pair mechanismspa
dc.subjectGACspa
dc.titleEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatmentspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343720306850spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jece.2020.104336spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesPresidencia de la República El Dane reveló que en el segundo trimestre de 2019, el PIB de Colombia creció al 3%, la cifra más alta desde 2015 (2019)spa
dc.relation.referencesM. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6spa
dc.relation.referencesM.J. Logsdon, K. Hagelstein, C.I. Terry Mudder El Manejo del cianuro en la extracción de oro (2001)spa
dc.relation.referencesC.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334nspa
dc.relation.referencesSamir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes J. Hazard. Mater., 392 (2020), 10.1016/j.jhazmat.2020.122389 NAspa
dc.relation.referencesM.J. López-Muñoz, J. Aguado, R. van Grieken, J. Marugán Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions Appl. Catal. B Environ., 86 (2009), pp. 53-62, 10.1016/j.apcatb.2008.07.022spa
dc.relation.referencesE.E. Little, R.D. Calfee, P. Theodorakos, Z.A. Brown, C.A. Johnson Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance Environ. Sci. Pollut. Res., 14 (2007), pp. 333-337, 10.1065/espr2007.03.400spa
dc.relation.referencesC.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023spa
dc.relation.referencesA. Ramírez Cyanide toxicity. Bibliography research of its effects in animals and man An Fac Med., 71 (2010), pp. 54-61spa
dc.relation.referencesA. Smith, T. Mudder The Chemistry and Treatment of Cyanidation Wastes London (1991)spa
dc.relation.referencesE. Gail, S. Gos, R. Kulzer, J. Lorösch, A. Rubo, M. Sauer, R. Kellens, J. Reddy, N. Steier, W. Hasenpusch Cyano Compounds, Inorganic, Ullmanns Encycl. Ind. Chem. (2012), pp. 673-710., 10.1002/14356007.a08spa
dc.relation.referencesMinisterio de la protección social Ministerio de ambiente vivienda y desarrollo territorial, Resolución Numero 2115, Minambiente (2017), pp. 1-23, 10.1017/CBO9781107415324.004spa
dc.relation.referencesMinisterio de ambiente y desarrollo sostenible Resolución número, 631 (2015), pp. 1-62spa
dc.relation.referencesA. Gaviria, L. Meza Analysis of Alternatives for the Degradation of the Cyanide in Liquids and Solids Efluentes of the County of Segovia, Antioquia and in the Ore Dressing Mill of the Mineros Nacionales, County of Marmato, Caldas Rev. Dyna. (2006), pp. 31-44spa
dc.relation.referencesC. Young, T. Jordan Cyanide remediation: current and past technologies Proc. 10th Annu. Conf. (1995), pp. 104-129spa
dc.relation.referencesL. Giraldo, G. Juan, C. Moreno Determinación de la entalpía de inmersión y la capacidad de adsorción de un carbón activado en soluciones acuosas de plomo Rev. Colomb. Química., 33 (2004), pp. 87-97spa
dc.relation.referencesM. Tomaszewska, S. Mozia Removal of organic matter from water by PAC/UF system Water Res., 36 (2002), pp. 4137-4143, 10.1016/S0043-1354(02)00122-7spa
dc.relation.referencesC.A. Basar, A. Karagunduz, A. Cakici, B. Keskinler Removal of surfactants by powdered activated carbon and microfiltration Water Res., 38 (2004), pp. 2117-2124, 10.1016/j.watres.2004.02.001spa
dc.relation.referencesC. Johnson, D. Grimes, R. Rye Fate of process solution cyanide and nitrate at three Nevada gold mines inferred from stable carbon and nitrogen isotope measurements Miner. Process. Extr. Metall., 109 (2000), pp. 68-78, 10.1179/mpm.2000.109.2.68spa
dc.relation.referencesK. Anoop Krishnan, K.G. Sreejalekshmi, R.S. Baiju Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith Bioresour. Technol., 102 (2011), pp. 10239-10247, 10.1016/j.biortech.2011.08.069spa
dc.relation.referencesP. Navarro, C. Vargas Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro Rev. Metal., 46 (2010), pp. 227-239, 10.3989/revmetalm.0929spa
dc.relation.referencesZ. Aksu, A. Çalik Adsorption of iron(III)-cyanide complex ions to granular activated carbon J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 34 (1999), pp. 2087-2103, 10.1080/10934529909376949spa
dc.relation.referencesI. Saito The removal of hexacyanoferrate(II) and (III) ions in dilute aqueous solution by activated carbon Water Res., 18 (1984), pp. 319-323, 10.1016/0043-1354(84)90106-4spa
dc.relation.referencesC.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes Diam. Relat. Mater., 93 (2019), pp. 193-199, 10.1016/j.diamond.2019.02.018spa
dc.relation.referencesH. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror Effect of ozone treatment on surface properties of activated carbon Langmuir, 18 (2002), pp. 2111-2116, 10.1021/la010920aspa
dc.relation.referencesY.S. Ho, G. McKay The kinetics of sorption of divalent metal ions onto sphagnum moss peat Water Res., 34 (2000), pp. 735-742, 10.1016/S0043-1354(99)00232-8spa
dc.relation.referencesA.G. Ritchie Alternative to the Elovich equation for the kinetics of adsorption of gases on solids J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 73 (1977), pp. 1650-1653, 10.1039/F19777301650spa
dc.relation.referencesD.L. Sparks Sorption phenomena on soils Environ. Soil Chem. (second) (2003), pp. 133-186spa
dc.relation.referencesD.G. Kinniburgh General purpose adsorption isotherms Environ. Sci. Technol., 20 (1986), pp. 895-904, 10.1021/es00151a008spa
dc.relation.referencesJ.C. Lazo, A.E. Navarro, M.R. Sun-Kou, N.P. Llanos Síntesis Y Caracterización De Arcillas Organofílicas Y Su Aplicación Como Adsorbentes Del Fenol Rev. La Soc. Química Del Perú., 74 (2008), pp. 3-19spa
dc.relation.referencesC.F. Rivas, O. Núñez, F. Longoria, L. González Isoterma De Langmuir Y Freundlich Como Modelos Para La Adsorción De Componentes De Ácido Nuclaico Sobre WO3 Saber [Online], 26 (2014), pp. 43-49spa
dc.relation.referencesI.M. Kolthoff Properties of active charcoal reactivated in oxygen at 400° J. Am. Chem. Soc., 54 (1932), pp. 4473-4480, 10.1021/ja01351a001spa
dc.relation.referencesThe Chemistry of the Ferrocyanides, vol. VII, American Cyanamid Co, New York (1953)spa
dc.relation.referencesT.C. Eisele, K.L. Gabby Review of reductive leaching of iron by anaerobic bacteria Miner. Process. Extr. Metall. Rev., 35 (2014), pp. 75-105, 10.1080/08827508.2012.703627spa
dc.relation.referencesX. Dai, A. Simons, P. Breuer A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores Miner. Eng., 25 (2012), pp. 1-13, 10.1016/j.mineng.2011.10.002spa
dc.relation.referencesN. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027spa
dc.relation.referencesN. Takeno Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases Natl. Inst. Adv. Ind. Sci. Technol. Tokyo (2005), p. 285 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Atlas+of+Eh-pH+diagrams+Intercomparison+of+thermodynamic+databases#0spa
dc.relation.referencesA.R. Gerson The role of fuzzy interfaces in the nucleation, growth and agglomeration of aluminum hydroxide in concentrated caustic solutions Prog. Cryst. Growth Charact. Mater., 43 (2001), pp. 187-220, 10.1016/S0960-8974(01)00006-7spa
dc.relation.referencesY.S. Ho Review of second-order models for adsorption systems J. Hazard. Mater., 136 (2006), pp. 681-689, 10.1016/j.jhazmat.2005.12.043spa
dc.relation.referencesS. Lagergren Zur theorie der sogenannten adsorption gelöster stoffe K. Sven. Vetenskapsakademiens. Handl., 24 (1898), pp. 1-39spa
dc.relation.referencesZ. Aksu, A. Çalik, A.Y. Dursun, Z. Demircan Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms Process Biochem., 34 (1999), pp. 483-491, 10.1016/S0032-9592(98)00115-0spa
dc.relation.referencesZ. Aksu Biosorption of heavy metals by microalgae in batch and continuous systems Wastewater Treat. Algae (1998), pp. 37-53, 10.1007/978-3-662-10863-5_3spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal