Show simple item record

dc.creatorBolaño Truyol, Jehison Rafael
dc.date.accessioned2020-09-08T23:30:23Z
dc.date.available2020-09-08T23:30:23Z
dc.date.issued2020
dc.identifier.citationBolaño, J. (2020). Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de barranquilla a través del uso de herramientas de sensoramiento remoto. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7078spa
dc.identifier.urihttps://hdl.handle.net/11323/7078
dc.descriptionMaestría de Investigación en Desarrollo Sostenible Midesspa
dc.description.abstractThe disruption of air quality due to the increase in atmospheric emissions, especially due to the burning of biomass, constitutes one of the greatest environmental concerns worldwide. In this study, through the use of remote sensing tools and dispersion models, the contributions of the burns in the alterations of PM2.5 in two municipalities of the Barranquilla Metropolitan Area were estimated. Initially, the variations of PM2.5 between January 2017 and June 2018 were analyzed and validated for the municipalities of Soledad (Hipódromo and EDUMAS stations) and Malambo (Tránsito y Transporte station). Subsequently, using the parameters AOD and AAE, the aircraft are classified according to their origin. The biomass burning report is estimated for the period between February 24 and March 30, 2018, when the main burning periods are observed. The burn points and their intensity were obtained from satellite images and the Hysplit model used to estimate emissions. From the dispersion model, which used forward trajectories, it obtained the burns that contribute, on average, with 26.93% for EDUMAS and 22.82% at Hipódromo (Soledad), while for Transit and Transportation with 28.78% (Malambo) of PM2.5 proteins. These results indicate a significant contribution of regional burns, with the contributions coming from La Guajira being recorded. This information is essential so that they can implement more effective mitigation measures and lessen the impact on the population's health.spa
dc.description.abstractEl deterioro de la calidad de aire por el aumento de emisiones atmosféricas, en especial por las quemas de biomasa, constituye una de las mayores preocupaciones ambientales a nivel mundial. En este estudio, mediante el uso de herramientas de sensoramiento remoto y modelos de dispersión, se estimaron los aportes de las quemas en las concentraciones de PM2.5 en dos muncipios del Área Metropolitana de Barranquilla. Inicialmente se analizó y validó las concentraciones de PM2.5 entre enero 2017 a junio 2018 para los municipios de Soledad (estaciones Hipódromo y EDUMAS) y Malambo (estación Tránsito y Transporte). Posteriormente, empleando los parámetros AOD y AAE, los aerosoles se clasificaron según su origen. El aporte de las quemas de biomasa se estimó para el período entre 24 de febrero y 30 de marzo de 2018, cuando se presentaron los principales períodos de quema. Los puntos de quema y su intensidad se obtuvieron a partir de imágenes satelitales y el modelo Hysplit utilizado para estimar las emisiones. A partir del modelo de dispersión, que empleó trayectórias forward, se obtuvo que las quemas aportan, en promedio, con 26,93% para EDUMAS y 22,82% en Hipódromo (Soledad), mientras que para Tránsito y Transporte con 28,78% (Malambo) de las concentraciones de PM2.5. Esos resultados indican un aporte significativo de quemas regionales, siendo registradas contribuciones que vienen desde La Guajira. Esas informaciones son fundamentales para que se puedan implementar medidas de mitigación más efectivas y disminuir el impacto sobre la salud de la población.spa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectBiomass burningspa
dc.subjectParticulate matterspa
dc.subjectRemote sensingspa
dc.subjectDispersion model,spa
dc.subjectHysplitspa
dc.subjectQuemas de biomasaspa
dc.subjectMaterial particuladospa
dc.subjectSensoramiento remotospa
dc.subjectModelo de dispersiónspa
dc.titleDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remotospa
dc.typemasterThesisspa
dcterms.referencesAbdelhady, S., Borello, D., Shaban, A., & Rispoli, F. (2014). Viability study of biomass power plant fired with rice straw in Egypt. Energy Procedia, 61, 211–215. https://doi.org/10.1016/j.egypro.2014.11.1072spa
dcterms.referencesAdamiec, E., Dajda, J., Gruszecka-Kosowska, A., Helios-Rybicka, E., Kisiel-Dorohinicki, M., Klimek, R., Pałka, D., & Wąs, J. (2019). Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere, 10(7), 393. https://doi.org/10.3390/atmos10070393spa
dcterms.referencesAkagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011spa
dcterms.referencesAlbar, I., Amissah, L., Bowman, D., Charlton, V., Cochrane, M., Groot, B. De, Ellison, D., Field, R., Flannigan, M., Goldammer, J., Kant, P., Khan, M. N., Kornexl, W. L., Krasovskii, A., McCaffrey, S., Mitchell, A. M., Mohanty, A. K., Moore, P., Murdiyarso, D., … Vikram, E. (2018). Global Fire Challenges in a warming world: Summary Note of a Global Expert Workshop on Fire and Climate Change. Occasional Paper No. 32, 32(January), 61.spa
dcterms.referencesAlcaldía de Barranquilla. (2013). Gaceta distrital N° 390-6. Gaceta Distrial, 429, 100.spa
dcterms.referencesAldeghi, Carn, Escobar-Wolf, & Groppelli. (2019). Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala. Remote Sensing, 11(18), 2151. https://doi.org/10.3390/rs11182151spa
dcterms.referencesAMB. (2005). Area Metropolitana De Barranquilla Plan De Gestion Integral De Diagnóstico Capitulo V . Diagnostico Institucional: Vol. I.spa
dcterms.referencesArmenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002spa
dcterms.referencesAsif, Z., Chen, Z., & Han, Y. (2018). Air quality modeling for effective environmental management in the mining region. Journal of the Air and Waste Management Association, 68(9), 1001–1014. https://doi.org/10.1080/10962247.2018.1463301spa
dcterms.referencesBae, M., Kim, B. U., Kim, H. C., & Kim, S. (2020). A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11(2), 5–15. https://doi.org/10.3390/atmos11020141spa
dcterms.referencesBallesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of The Total Environment, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755spa
dcterms.referencesBarranquilla, A. de. (2016). Plan de Ordenamiento Territorial.spa
dcterms.referencesBibi, H., Alam, K., & Bibi, S. (2016). In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains. Atmospheric Research, 181, 106–114. https://doi.org/10.1016/j.atmosres.2016.06.017spa
dcterms.referencesBitta, J., Pavlíková, I., Svozilík, V., & Jančík, P. (2018). Air pollution dispersion modelling using spatial analyses. ISPRS International Journal of Geo-Information, 7(12), 7–9. https://doi.org/10.3390/ijgi7120489spa
dcterms.referencesChang, C. H., Hsiao, Y. L., & Hwang, C. (2015). Evaluating spatial and temporal variations of aerosol optical depth and biomass burning over southeast asia based on satellite data products. Aerosol and Air Quality Research, 15(7), 2625–2640. https://doi.org/10.4209/aaqr.2015.10.0589spa
dcterms.referencesChuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., & Toriba, A. (2014). Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol and Air Quality Research, 14(4), 1247– 1257. https://doi.org/10.4209/aaqr.2013.05.0161spa
dcterms.referencesCIOH. (2020). Centro de Investigaciones Oceanográficas e Hidrográficas. Epocas Climaticas En El Litoral Caribe Colombiano. https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe7.phpspa
dcterms.referencesCONAMA. (2016). Teledetección y sensores Medioambientales. Respuesta Verde CONAMA 2016, 17. http://www.conama.org/conama/download/files/conama2016//GTs 2016/14_final.pdfspa
dcterms.referencesContraloría Distrital. (2018). Informe del estado de los recursos naturales y del Ambiente de Barranquilla 2018.spa
dcterms.referencesDawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295– 4309. https://doi.org/10.5194/acp-7-4295-2007spa
dcterms.referencesDepartamento Nacional de Planeación de Colombia. (2018). Valoración económica de la degradación ambiental en Colombia 2015. https://colaboracion.dnp.gov.co/CDT/Prensa/Valoración económica de la degradación ambiental.pdfspa
dcterms.referencesDevara, P. C. S., & Manoj, M. G. (2013). Aerosol-cloud-precipitation interactions: A challenging problem in regional environment and climate research. Particuology, 11(1), 25– 33. https://doi.org/10.1016/j.partic.2012.07.006spa
dcterms.referencesDing, A., Yang, Y., Zhao, Z., Hüls, A., Vierkötter, A., Yuan, Z., Cai, J., Zhang, J., Gao, W., Li, J., Zhang, M., Matsui, M., Krutmann, J., Kan, H., Schikowski, T., Jin, L., & Wang, S. (2017). Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Scientific Reports. https://doi.org/10.1038/s41598-017-15295-8spa
dcterms.referencesEPA. (2017). Quality Assurance Handbook for Air Pollution Measurement Systems: Vol. II.spa
dcterms.referencesFan, Q., Lan, J., Liu, Y., Wang, X., Chan, P., Hong, Y., Feng, Y., Liu, Y., Zeng, Y., & Liang, G. (2015). Process analysis of regional aerosol pollution during spring in the Pearl River Delta region , China. Atmospheric Environment, 122(January 2013), 829–838. https://doi.org/10.1016/j.atmosenv.2015.09.013spa
dcterms.referencesFilchev, L., Pashova, L., Kolev, V., & Frye, S. (2020). Chapter 6 - Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing (P. Škoda & F. B. T.-K. D. in B. D. from A. and E. O. Adam (eds.); pp. 103–136). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819154-5.00016-3spa
dcterms.referencesGallego, A., Ignacio, G., Bejamin, S., Fernandez, P., Garcinuño, R., Bravo, J., Pradana, J., Garcia, M., & Durand, J. (2012). Contaminación atmosférica. In Universidad Naciaonal a Distancia (Vol. 91, Issue 5). https://doi.org/10.1017/CBO9781107415324.004spa
dcterms.referencesGEOS-Chem. (2019). GEOS-Chem. Overview. http://acmg.seas.harvard.edu/geos/geos_overview.htmlspa
dcterms.referencesGFWF. (2019). Global Watch Fires. Global Watch Fires. https://fires.globalforestwatch.org/about/spa
dcterms.referencesGiglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217(March), 72–85. https://doi.org/10.1016/j.rse.2018.08.005spa
dcterms.referencesGodish, T. (2003). Air Quality, Fourth Edition. In Air Quality, Fourth Edition. https://doi.org/10.1201/b13168spa
dcterms.referencesGonzález-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358spa
dcterms.referencesGuillermo, Ronquillo-Lomeli, Gilberto, Herrera-Ruiz, Alfredo, I., José Gabriel Alejandro, R.-M., Ramirez-Maya, & Trejo-Perea, M. (2018). Total suspended particle emissions modelling in an industrial boiler. Energies, 11(11). https://doi.org/10.3390/en11113097spa
dcterms.referencesGuo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., & Li, Y. (2018). Improving PM2.5 forecasting and emission estimation based on the bayesian optimization method and the coupled FLEXPART-WRF model. Atmosphere, 9(11), 1–17. https://doi.org/10.3390/atmos9110428spa
dcterms.referencesHernandez, A. J., Morales-rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051spa
dcterms.referencesHoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., & Escobar, J. (2017). The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001spa
dcterms.referencesHuang, H. C., Lin, F. C. F., Wu, M. F., Nfor, O. N., Hsu, S. Y., Lung, C. C., Ho, C. C., Chen, C. Y., & Liaw, Y. P. (2019). Association between chronic obstructive pulmonary disease and PM2.5 in Taiwanese nonsmokers. International Journal of Hygiene and Environmental Health, 222(5), 884–888. https://doi.org/10.1016/j.ijheh.2019.03.009spa
dcterms.referencesHuang, X. H. H., Bian, Q., Ng, W. M., Louie, P. K. K., & Yu, J. Z. (2014). Characterization of PM2.5 major components and source investigation in suburban Hong Kong: A one year monitoring study. Aerosol and Air Quality Research, 14(1), 237–250. https://doi.org/10.4209/aaqr.2013.01.0020spa
dcterms.referencesIDEAM. (2019). IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales. Servicios de Pronósticos y Alertas. http://www.ideam.gov.co/web/atencion-y-participacionciudadana/servicios-pronosticos-alertasspa
dcterms.referencesINPE. (2020). Banco de datos de quemadas. Portal De Datos Abiertos Del Programa Quemadas. http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/apresentacaospa
dcterms.referencesIslam, Robiul;Jayarathne, T., Simpson, I., Werden, B., Maben, J., Gilbert, A., Praveen, P., Adhikari, S., Panday, A., Rupakheti, M., Blake, D., Yokelson, R., DeCarlo, P., Keene, W., & Stone, E. (2019). Ambient air quality in the Kathmandu Valley, Nepal during the premonsoon: Concentrations and sources of particulate matter and trace gases. In Atmospheric Chemistry and Physics Discussions (pp. 1–53). https://doi.org/10.5194/acp-2019-333spa
dcterms.referencesJiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana montañosa y tropical. Universidad de Antioquia Facultad de Ingeniería. Medellín. Colombia. 235.spa
dcterms.referencesJuda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729. https://doi.org/10.1016/j.scitotenv.2020.136729spa
dcterms.referencesKabisch, N., Selsam, P., Kirsten, T., Lausch, A., & Bumberger, J. (2019). A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes. 99(July 2018), 273–282.spa
dcterms.referencesKaneyasu, N., Ishidoya, S., Terao, Y., Mizuno, Y., & Sugawara, H. (2020). Estimation of PM2.5 Emission Sources in the Tokyo Metropolitan Area by Simultaneous Measurements of Particle Elements and Oxidative Ratio in Air. ACS Earth and Space Chemistry, 4(2), 297– 304. https://doi.org/10.1021/acsearthspacechem.9b00314spa
dcterms.referencesKnorr, W., Dentener, F., Lamarque, J. F., Jiang, L., & Arneth, A. (2017). Wildfire air pollution hazard during the 21st century. Atmospheric Chemistry and Physics, 17(14), 9223–9236. https://doi.org/10.5194/acp-17-9223-2017spa
dcterms.referencesKong, H., Lin, J., Zhang, R., Liu, M., Weng, H., Ni, R., Chen, L., & Wang, J. (2019). Highresolution (0.05°x 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmospheric Chemistry and Physics, x, 12835–12856.spa
dcterms.referencesKota, S. H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S. K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., & Zhang, H. (2018). Year-long simulation of gaseous and particulate air pollutants in India. Atmospheric Environment, 180, 244–255. https://doi.org/10.1016/j.atmosenv.2018.03.003spa
dcterms.referencesKraaij, T., Baard, J. A., Arndt, J., Vhengani, L., & van Wilgen, B. W. (2018). An assessment of climate, weather, and fuel factors influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecology, 14(2), 1–12. https://doi.org/10.1186/s42408-018-0001-0spa
dcterms.referencesKumar, S., Lin, N., Chantara, S., Wang, S., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Science of the Total Environment Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204spa
dcterms.referencesLai, H. C., Ma, H. W., Chen, C. R., Hsiao, M. C., & Pan, B. H. (2019). Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmospheric Environment, 212(May), 116–127. https://doi.org/10.1016/j.atmosenv.2019.05.038spa
dcterms.referencesLangley Dewitt, H., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., De Dieu Ndikubwimana, J., Nkusi, J., & Safari, B. (2019). Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 19(3), 2063–2078. https://doi.org/10.5194/acp-19-2063-2019spa
dcterms.referencesLi, Fang, Val Martin, M., Hantson, S., Andreae, M. O., Arneth, A., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kaiser, J. W., Kluzek, E., Liu, X., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., … Wiedinmyer, C. (2019). Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics Discussions, January, 1–57. https://doi.org/10.5194/acp-2019-37spa
dcterms.referencesLi, Fangjun, Zhang, X., Kondragunta, S., & Roy, D. P. (2018). Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States. Journal of Geophysical Research: Biogeosciences, 123(2), 722–739. https://doi.org/10.1002/2017JG004279spa
dcterms.referencesLi, X., Chen, W. Y., Sanesi, G., & Lafortezza, R. (2019). Remote sensing in urban forestry: Recent applications and future directions. Remote Sensing, 11(10), 1–20. https://doi.org/10.3390/rs11101144spa
dcterms.referencesLi, Z., Wang, Y., Li, Z., Guo, S., & Hu, Y. (2020). Levels and Source of PM2.5 Associated PAHs during and after Wheat Harvest in a Central Rural Area of Beijing-Tianjin-Hebei (BTH) Region. Aerosol and Air Quality Research, 1070–1082. https://doi.org/10.4209/aaqr.2020.03.0083spa
dcterms.referencesLiu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore, A. M., Mickley, L. J., Cusworth, D. H., & Milly, G. (2018). Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172(September 2017), 83–92. https://doi.org/10.1016/j.atmosenv.2017.10.024spa
dcterms.referencesLiu, Y., Wang, J., Zhao, X., Wang, J., Wang, X., Hou, L., Yang, W., Han, B., & Bai, Z. (2020). Characteristics, secondary formation and regional contributions of pm2.5 pollution in jinan during winter. Atmosphere, 11(3), 9–11. https://doi.org/10.3390/atmos11030273spa
dcterms.referencesLlanos, E. (2011). Metropolización de Barranquilla y problemática espacial de Soledad - Atlántico. Perspectiva Geográfica, 1(15), 261–276. https://doi.org/10.19053/01233769.1742spa
dcterms.referencesLuo, Lei, Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S., Shao, J., Bachagha, N., Yang, R., & Yao, Y. (2019). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(June), 111280. https://doi.org/10.1016/j.rse.2019.111280spa
dcterms.referencesLuo, Li, Zhang, Y., Xiao, H., Xiao, H., & Zheng, N. (2019). Spatial Distributions and Sources of Inorganic chlorine in PM2.5 across China in winter. Atmosphere, x.spa
dcterms.referencesMADS. (2011). Estrategia de corresponsabilidad social en la lucha contra incendios forestales. 8, 21. www.minambiente.gov.coContenidospa
dcterms.referencesMalamakal, T., Chen, L. A., Wang, X., Green, M. C., Gronstal, S., Chow, J. C., & Watson, J. G. (2013). Prescribed burn smoke impact in the Lake Tahoe Basin : model simulation and field verification. 52, 225–243.spa
dcterms.referencesMarkou, M. T., & Kassomenos, P. (2010). Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmospheric Research, 98(2–4), 438–457. https://doi.org/10.1016/j.atmosres.2010.08.006spa
dcterms.referencesMartins, L. D., Hallak, R., Alves, R. C., de Almeida, D. S., Squizzato, R., Moreira, C. A. B., Beal, A., da Silva, I., Rudke, A., & Martins, J. A. (2018). Long-range transport of aerosols from biomass burning over Southeastern South America and their implications on air quality. Aerosol and Air Quality Research, 18(7), 1734–1745. https://doi.org/10.4209/aaqr.2017.11.0545spa
dcterms.referencesMasiol, M., Squizzato, S., Rich, D. Q., & Hopke, P. K. (2019). Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmospheric Environment, 201(June 2018), 110–120. https://doi.org/10.1016/j.atmosenv.2018.12.038spa
dcterms.referencesMataveli, G. A. V., Silva, M. E. S., França, D. de A., Brunsell, N. A., de Oliveira, G., Cardozo, F. da S., Bertani, G., & Pereira, G. (2019). Characterization and Trends of Fine Particulate Matter (PM2.5) Fire Emissions in the Brazilian Cerrado during 2002–2017. Remote Sensing, 11(19), 2254. https://doi.org/10.3390/rs11192254spa
dcterms.referencesMendez-Espinosa, J. F., Belalcazar, L. C., Morales Betancourt, R., Ballesteros-González, K., Sullivan, A. P., Morales-Betancourt, R., Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos- Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., Escobar, J., Chen, S. P., Wang, C. C. H., Lin, W. D., Tong, Y. H., Chen, Y. C., Chiu, C. J., … Wu, W. (2017). Ultrafine particles from residential biomass combustion: A review on experimental data and toxicological response. Atmospheric Chemistry and Physics, 9(February), 1–15. https://doi.org/10.1080/02726351003758444spa
dcterms.referencesMielonen, T., Aaltonen, V., Lihavainen, H., Hyvärinen, A. P., Arola, A., Komppula, M., & Kivi, R. (2013). Biomass burning aerosols observed in Northern Finland during the 2010 wildfires in Russia. Atmosphere, 4(1), 17–34. https://doi.org/10.3390/atmos4010017 Ministerio de Ambiente y Desarrollo Sostenible. (2017). 2017 COLOMBIA Resolución 2254 de 2017 - Niveles Calidad del Aire.spa
dcterms.referencesMoghim, S., & Ramezanpoor, R. (2019). Characterization of aerosol types over Lake Urmia Basin. E3S Web of Conferences, 99, 3–6. https://doi.org/10.1051/e3sconf/20199901006spa
dcterms.referencesMoreno Horacio. (2019). Semana Sostenible. Muertes Por Contaminación Del Aire Le Costaron a Medellín $5 Billones En Solo Un Año. https://sostenibilidad.semana.com/medioambiente/articulo/muertes-por-contaminacion-del-aire-le-costaron-a-medellin-5-billonesde-pesos-en-solo-un-ano/43332spa
dcterms.referencesMoya Álvarez, A. S., Arredondo, R. E., & Yuli Posadas, R. Á. (2017). Determination of the presence of particles (PM 10 ) in Peru produced by biomass burning using numerical models. Revista Internacional de Contaminacion Ambiental, 33(1), 99–108. https://doi.org/10.20937/RICA.2017.33.01.09spa
dcterms.referencesMukai, S., Yasumoto, M., & Nakata, M. (2014). Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model. Scientific World Journal, 2014(June 2010). https://doi.org/10.1155/2014/649648spa
dcterms.referencesMukherjee, T., Vinoj, V., Midya, S. K., Puppala, S. P., & Adhikary, B. (2020). Numerical simulations of different sectoral contributions to post monsoon pollution over Delhi. Heliyon, 6(3), e03548. https://doi.org/10.1016/j.heliyon.2020.e03548spa
dcterms.referencesNación. (2018, December 21). El fenómeno del Niño ya está en el país y nos está impactando. EL Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/fenomeno-del-nino-2018- 2019-en-colombia-y-probables-afectaciones-307218spa
dcterms.referencesNASA. (2019a). MODIS Moderate Resolution Imaging Spectroradiometer. https://modis.gsfc.nasa.gov/about/index.phpspa
dcterms.referencesNASA. (2019b). NASA Worldview. https://worldview.earthdata.nasa.gov/spa
dcterms.referencesNgan, F., Stein, A., Finn, D., & Eckman, R. (2018). Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment. Atmospheric Environment, 186(March), 18–31. https://doi.org/10.1016/j.atmosenv.2018.05.012spa
dcterms.referencesNOAA. (2019a). Hysplit. National Oceanic and Atmospheric Administration. https://www.arl.noaa.gov/hysplit/hysplit/spa
dcterms.referencesNOAA. (2019b). Información de archivo del Sistema global de asimilación de datos. Air Resources Laboratory. Información de archivo del Sistema global de asimilación de datosspa
dcterms.referencesNoda, J., Bergström, R., Kong, X., Gustafsson, T. L., Kovacevik, B., Svane, M., & Pettersson, J. B. C. (2019). Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History. Atmosphere, 10(12), 789. https://doi.org/10.3390/atmos10120789spa
dcterms.referencesNoyes, K. J., Kahn, R., Sedlacek, A., Kleinman, L., Limbacher, J., & Li, Z. (2020). Wildfire smoke particle properties and evolution, from space-based multi-angle imaging. Remote Sensing, 12(5). https://doi.org/10.3390/rs12050769spa
dcterms.referencesOcko, I. B., & Ginoux, P. A. (2017). Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements. Atmospheric Chemistry and Physics, 17(7), 4451–4475. https://doi.org/10.5194/acp-17-4451-2017spa
dcterms.referencesOrioli, R., Cremona, G., Ciancarella, L., & Solimini, A. G. (2018). Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191112spa
dcterms.referencesParques Nacionales Naturales de Colombia. (2014). Tres Hectáreas fueron consumidas en quema en el Vía Parque Isla de Salamanca. Parques Nacionales. http://www.parquesnacionales.gov.co/portal/es/tres-hectareas-fueron-consumidas-enquema-en-el-via-parque-isla-de-salamanca/spa
dcterms.referencesPathak, B., Bhuyan, P. K., Gogoi, M., & Bhuyan, K. (2012). Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmospheric Environment, 47, 307–315. https://doi.org/10.1016/j.atmosenv.2011.10.061spa
dcterms.referencesPereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017a). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161spa
dcterms.referencesPereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017b). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161spa
dcterms.referencesPereira, Allan Arantes, De Barros, D. A., Acerbi, F. W., Alves Pereira, J. A., & Dos Reis, A. A. (2013). Análise da distribuição espacial de áreas queimadas através da função K de Ripley. Scientia Forestalis/Forest Sciences, 41(100), 445–455.spa
dcterms.referencesPisso, I., Sollum, E., Grythe, H., Kristiansen, N., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.3. Geoscientific Model Development Discussions, January, 1–67. https://doi.org/10.5194/gmd- 2018-333spa
dcterms.referencesPrato, D. F., & Huertas, J. I. (2019). Determination of the area affected by agricultural burning. Atmosphere, 10(6), 1–14. https://doi.org/10.3390/atmos10060312spa
dcterms.referencesPribadi, A., & Kurats, G. (2016). Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. Journal of Physics: Conference Series, 755(1), 0–8. https://doi.org/10.1088/1742-6596/755/1/011001spa
dcterms.referencesQuerol, X., Pérez, N., Reche, C., Ealo, M., Ripoll, A., Tur, J., Pandolfi, M., Pey, J., Salvador, P., Moreno, T., & Alastuey, A. (2019). African dust and air quality over Spain: Is it only dust that matters? Science of the Total Environment, 686, 737–752. https://doi.org/10.1016/j.scitotenv.2019.05.349spa
dcterms.referencesReddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Marsham, J., & Spracklen, D. V. (2018). Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics Discussions, October 2012, 1–32. https://doi.org/10.5194/acp-2018-849spa
dcterms.referencesRoberts, G., Wooster, M. J., Xu, W., & He, J. (2018). Fire activity and fuel consumption dynamics in sub-Saharan Africa. Remote Sensing, 10(10), 1–22. https://doi.org/10.3390/rs10101591spa
dcterms.referencesRodrigues, J. A., Libonati, R., Peres, L. D. F., & Setzer, A. (2018). Mapeamento de Áreas Queimadas em Unidades de Conservação da Região Serrana do Rio de Janeiro Utilizando o Satélite Landsat-8 Durante a Seca de 2014. Anuário Do Instituto de Geociências - UFRJ, 41(1), 318–327. https://doi.org/0101-9759spa
dcterms.referencesRolph, G., Stein, A., & Stunder, B. (2017). Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling and Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025spa
dcterms.referencesRönkkö, T. J., Hirvonen, M. R., Happo, M. S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., & Jalava, P. I. (2020). Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environmental Research, 185(September 2019), 109360. https://doi.org/10.1016/j.envres.2020.109360spa
dcterms.referencesRupakheti, D., & Kang, S. (2018). Observation of optical properties and sources of aerosols at Buddha ’ s birthplace , Lumbini , Nepal : environmental implications. 14868–14881.spa
dcterms.referencesRybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122570spa
dcterms.referencesSamek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water, Air, and Soil Pollution, 228(8). https://doi.org/10.1007/s11270-017-3483-5spa
dcterms.referencesSchwartz, J. D., Wang, Y., Kloog, I., Yitshak-Sade, M., Dominici, F., & Zanobetti, A. (2018). Estimating the Effects of PM 2.5 on Life Expectancy Using Causal Modeling Methods. Environmental Health Perspectives, 126(12), 127002. https://doi.org/10.1289/EHP3130spa
dcterms.referencesShelestov, A., Kolotii, A., Borisova, T., Turos, O., Milinevsky, G., Gomilko, I., Bulanay, T., Fedorov, O., Shumilo, L., Pidgorodetska, L., Kolos, L., Borysov, A., Pozdnyakova, N., Chunikhin, A., Dudarenko, M., Petrosian, A., Danylevsky, V., Miatselskaya, N., & Choliy, V. (2019). Essential variables for air quality estimation. International Journal of Digital Earth, 0(0), 1–21. https://doi.org/10.1080/17538947.2019.1620881spa
dcterms.referencesShen, H., Cheng, P. H., Yuan, C. S., Yang, Z. M., Hung, C. M., & Ie, I. R. (2020). Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol and Air Quality Research, 20(3), 557–575. https://doi.org/10.4209/aaqr.2020.01.0007spa
dcterms.referencesShi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., & Wang, Y. (2019). Biomass burning aerosol characteristics for different vegetation types in different aging periods. Environment International, 126(February), 504–511. https://doi.org/10.1016/j.envint.2019.02.073spa
dcterms.referencesSilva, P. S., Bastos, A., Libonati, R., Rodrigues, J. A., & DaCamara, C. C. (2019). Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecology and Management, 446(May), 193–203. https://doi.org/10.1016/j.foreco.2019.05.047spa
dcterms.referencesSobhani, N., Kulkarni, S., & Carmichael, G. R. (2018). Source sector and region contributions to black carbon and PM2.5 in the Arctic. Atmospheric Chemistry and Physics, 18(24), 18123– 18148. https://doi.org/10.5194/acp-18-18123-2018spa
dcterms.referencesSoleimanifar, N., Bidad, K., Nicknam, M., Nikbin, B., & Mahmoudi, M. (2018). Effect of food intake and ambient particulate air pollution on ankylosing spondylitis disease activity. Clinical and Experimental Rheumatology, 36, S43. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L6222665 23spa
dcterms.referencesThermo Fisher Scientific. (2014). Instruction Manual Model 5014 i Beta. 106428. www.thermofisher.comspa
dcterms.referencesTurap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., & Nuerla, A. (2019). Chemical characteristics and source apportionment of pm2.5 during winter in the southern part of Urumqi, China. Aerosol and Air Quality Research, 19(6), 1325–1337. https://doi.org/10.4209/aaqr.2018.12.0454spa
dcterms.referencesUccelli, R., Mastrantonio, M., Altavista, P., Pacchierotti, F., Piersanti, A., & Ciancarella, L. (2019). Impact of modelled PM2.5, NO2 and O3 annual air concentrations on some causes of mortality in Tuscany municipalities. European Journal of Public Health, 29(5), 871–876. https://doi.org/10.1093/eurpub/cky210spa
dcterms.referencesUN-HABITAT. (2011). Book Review: Global Report on Human Settlements 2011, Cities and Climate Change. In Environmental Law Review (Vol. 14, Issue 3). https://doi.org/10.1350/enlr.2012.14.3.162spa
dcterms.referencesVenkatappa, M., Sasaki, N., Shrestha, R. P., Tripathi, N. K., & Ma, H. O. (2019). Determination of vegetation thresholds for assessing land use and land use changes in Cambodia using the Google Earth Engine cloud-computing platform. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131514spa
dcterms.referencesVictor, N., Alexandru, D., Luminita, M., & Camelia, T. (2018). Biomass Burning Aerosol Over Romania Using Dispersion Model And Calipso Data. 04012, 1–4.spa
dcterms.referencesViloria-Marimón, O. M., González-Álvarez, Á., & Mouthón-Bello, J. A. (2019). Analysis of the behavior of daily maximum rainfall within the department of Atlántico, Colombia. Water (Switzerland), 11(12), 1–24. https://doi.org/10.3390/w11122453spa
dcterms.referencesVivanco Moreno, S. F., & Ramírez Lara, E. (2007). Aplicación del Modelo Hysplit (Hybrid Single Particle Lagrangian Integrated Trayectories) para Evaluar las Trayectorias del Aire y su Impacto en la Dispersión de Contaminantes Atmosféricos.spa
dcterms.referencesVongruang, P., Wongwises, P., & Pimonsree, S. (2017). Assessment of fire emission inventories for simulating particulate matter in Upper Southeast Asia using WRF-CMAQ. Atmospheric Pollution Research, 8(5), 921–929. https://doi.org/10.1016/j.apr.2017.03.004spa
dcterms.referencesWang, L. K., Pereira, N. C., & Hung, Y. (2004). Air Pollution Control Engineering (H. Press (ed.); Vol. 1).spa
dcterms.referencesWang, X. D., Zheng, M., Lou, H. F., Wang, C. S., Zhang, Y., Bo, M. Y., Ge, S. Q., Zhang, N., Zhang, L., & Bachert, C. (2016). An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy: European Journal of Allergy and Clinical Immunology. https://doi.org/10.1111/all.12874spa
dcterms.referencesWerf, G. R. Van Der, Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & Morton, D. C. (2010). and Physics Global fire emissions and the contribution of deforestation , savanna , forest , agricultural , and peat fires ( 1997 – 2009 ). 2001, 11707– 11735. https://doi.org/10.5194/acp-10-11707-2010spa
dcterms.referencesWHO. (2014). Burden of disease from Ambient Air Pollution for 2012. Lmi, 2012–2014. https://doi.org/10.1016/S0140-6736(12)61766-8.Smithspa
dcterms.referencesWikistart. (2019). FLEXPART. Modelo FLEXPART. https://www.flexpart.eu/ Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research Atmospheres, 110(24), 1–24. https://doi.org/10.1029/2005JD006318spa
dcterms.referencesWooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 114(2), 236–254. https://doi.org/10.1016/j.rse.2017.12.016spa
dcterms.referencesWorld Health Organization. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. In World Health Organization. http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/es/spa
dcterms.referencesWorld Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. https://doi.org/10.1021/acs.est.5b05833spa
dcterms.referencesWorld Health Organization. (2018). Nueve de cada diez personas de todo el mundo respiran aire contaminado. World Health Organization. https://www.who.int/es/news-room/detail/02-052018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-takingactionspa
dcterms.referencesWu, Y., Arapi, A., Huang, J., Gross, B., & Moshary, F. (2018). Intra-continental wild fi re smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. 187(December 2017), 266–281.spa
dcterms.referencesWWF Colombia. (2013). Nodos Regionales De Cambio Climatico Reporte Consolidado De Linea Base Analisis De Riesgos Climaticos Y Necesidades De Adaptación Climatica. Ministerio Medio Ambiente. Colombia. http://www.minambiente.gov.co/index.php/component/content/article?id=1695:plantillacambio-climatico-45#1-1-enlacesspa
dcterms.referencesYang, Q., Huang, X., & Tang, Q. (2019). Science of the Total Environment The footprint of urban heat island effect in 302 Chinese cities : Temporal trends and associated factors. Science of the Total Environment, 655, 652–662. https://doi.org/10.1016/j.scitotenv.2018.11.171 Yeo, S. young, Lee, H. kyeong, Choi, S. woo, Seol, S. hee, Jin, H. ah, Yoo, C., Lim, J. yun, & Kim, J. soo. (2019). Analysis of the National Air Pollutant Emission Inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian Journal of Atmospheric Environment, 13(3), 212–231. https://doi.org/10.5572/ajae.2019.13.3.212spa
dcterms.referencesYin, L., Du, P., Zhang, M., Liu, M., Xu, T., & Song, Y. (2019). Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences, 16(7), 1629–1640. https://doi.org/10.5194/bg-16-1629-2019spa
dcterms.referencesZhang, T., Wooster, M. J., de Jong, M. C., & Xu, W. (2018). How well does the “small fire boost” methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sensing, 10(6). https://doi.org/10.3390/rs10060823spa
dcterms.referencesZhang, X., Kondragunta, S., & Quayle, B. (2011). Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Transactions on Geoscience and Remote Sensing, 49(11 PART 2), 4469–4482. https://doi.org/10.1109/TGRS.2011.2149535spa
dcterms.referencesZhang, X., Kondragunta, S., Ram, J., Schmidt, C., & Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research: Atmospheres, 117(D14), n/a-n/a. https://doi.org/10.1029/2012jd017459spa
dcterms.referencesZhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., & Zhang, R. (2018). A modeling study of the impact of crop residue burning on pm2.5 concentration in beijing and tianjin during a severe autumn haze event. Aerosol and Air Quality Research, 18(7), 1558–1572. https://doi.org/10.4209/aaqr.2017.09.0334spa
dc.contributor.tutorSchneider, Ismael Luis
dc.contributor.tutorCano Cuadro, Heidis Patricia
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International