Show simple item record

dc.creatorPedraza Yepes, Cristian Antonio
dc.creatorGonzález-Coneo, Jorge
dc.creatorMancera-Trejos, Carlos A.
dc.creatorFlorez-Sarmiento, Luis E.
dc.creatorTORRES DIAZ, GABRIEL AGENOR
dc.creatorGonzalez Olier, Camilo Andres
dc.date.accessioned2020-09-18T20:22:51Z
dc.date.available2020-09-18T20:22:51Z
dc.date.issued2020-07
dc.identifier.issn1819-6608
dc.identifier.urihttps://hdl.handle.net/11323/7115
dc.description.abstractThis article deals with the design, simulation and construction of a fuel storage tank-chassis and a lifting system coupled as a single unit to a Cummins QSK19 engine driven HL260m pump that can guarantee an operating autonomy of up to 12 continuous hours and can be transported to different locations by means of lifting systems. For the mechanical design the recommendations of the American Institute of Steel Construction (AISC) and the application of the failure criteria for Von Mises ductile materials or Maximum Energy Distortion were used. For the dimensioning of the storage tank, the average consumption stipulated by the manufacturer was used and the simulations were performed with SolidWorks®. A functional and safe system that can be used in on-site applications was achieved.spa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceARPN Journal of Engineering and Applied Sciencesspa
dc.subjectSimulationspa
dc.subjectMechanical designspa
dc.subjectConstructionspa
dc.subjectChassisspa
dc.subjectCentrifugal pumpspa
dc.titleDesign and construction of tank-chassis and lifting structure for centrifugal pump HL260 M powered by a Diesel Enginespa
dc.typearticlespa
dcterms.references[1] Caterpillar. 2012. Diesel fuels & diesel fuel systems, Caterpillar Inc., United States.spa
dcterms.references[2] American national standards institute, ANSI/AISC 360-10 specification for Steel Constructions, (2016).spa
dcterms.references[3] Cummins Inc, QSK19 for Mining (EmissionsCertified), Cummins Inc, (2015) Available: http://cumminsengines.com/showcaseitem.aspx?id=156&title=QSK19+for+Mining+%28E missionsCertified%29&Filters=3%3ATier+2+%2F+Stage+II|4 %3A%3E453%3C1059#specifications.spa
dcterms.references[4] R. Hibbeler. 2006. Mecánica de materiales, Mexico: Pearson Prentice Hall, sixth edition.spa
dcterms.references[5] R. Budynas y K. Nisbett. 2008. Diseño en ingeniería mecánica de Shigley, Mexico: Mc Graw Hill, eighth edition.spa
dcterms.references[6] Ipac-acero. 2018. Avaible: http://www.ipacacero.com/assets/img/upload/big/5ada62cf4a95596a1 3062ee6ae2cb279.pdfspa
dcterms.references[7] R. A. Mireles. 1992. Teoría de falla y sus aplicaciones, Tesis de maestro en ciencias, San Nicolás de Los Garza: Universidad de nuevo León.spa
dcterms.references[8] Bulian G. and Cercos-Pita J. 2918. Co-simulation of ship motions and sloshing in tanks. Ocean Engineering.spa
dcterms.references[9] R. A. Ibrahim. 2015. Liquid Sloshing Dynamics, Cambridge: Cambridge University Press.spa
dcterms.references[10]Arora S. and Vasudevan S. 2017. Analysis of sloshing-induced loads on the fuel tank structure. Chalmers University of Technology.spa
dcterms.references[11]X.-s. L. Y.-y. R. Y.-n. W. J. Xue-lian Zheng. 2013. «Effects of Transverse Baffle Design on Reducing Liquid Sloshing in Partially Filled Tank Vehicles» Mathematical Problems in Engineering. I: 1-13.spa
dcterms.references[12]R. T. K. Raj y T. B. a. G. Edison. 2014. «Design Of Fuel Tank Baffles To Reduce Kinetic Energy». ARPN Journal of Engineering and Applied Sciences. 9(3): 244-249.spa
dcterms.references[13]R. A. Ibrahim. 2015. Liquid Sloshing Dynamics, Cambridge: Cambridge University Press.spa
dcterms.references[14]C. Mataix. 2005. Mecánica de Fluidos y Maquinas Hidráulicas, Mexico: Alfaomega-Oxford, second edition.spa
dcterms.references[15]I. Shames. 1995. Mecánica de Fluidos. McGraw-Hill, Mexico: McGraw-Hill, tercera edición.spa
dcterms.references[16]Sauret A., Boulogne F., Cappello J., Dressaire E. and Stone H. 2105. Damping of liquid sloshing by foams.spa
dcterms.references[17]Abdollahzadeh Jamalabad, M., Ho-Huu, V. and Khang Nguyen T. 2018. Optimal Design of Circular Baffles on Sloshing in a Rectangular Tank Horizontally Coupled by Structure. Water.spa
dcterms.references[18]Z. Saoudi, Z. Hafsia y K. Maalel. 2013. «Dumping Effects of Submerged Vertical Baffles and Slat Screen on Forced Sloshing Motion». Journal of Water Resource and Hydraulic Engineering. 2(2): 51-60.spa
dcterms.references[19]Cosmpetrol ltda. 2012. Procedimiento para prueba hidrostática de estanqueidad en tanques de almacenamiento. Bogotá.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttp://www.arpnjournals.org/jeas/research_papers/rp_2020/jeas_0720_8248.pdfspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal